CHAPTER 2

ARRAYS AND STRUCTURES

21 ARRAYS

2.1.1 The Abstract Data Type

We begin our discussion by considering an array as an ADT. This is not the usual per-
spective since many programmers view an array only as "a consecutive set of memory
locations." This is unfortunate because it clearly shows an emphasis on implementation
issues. Thus, although an array is usually implemented as a consecutive set of memory
locations, this is not always the case. Intuitively an array is a set of pairs, <index,
value>, such that each index that is defined has a value associated with it. In mathemati-
cal terms, we call this a correspondence or a mapping. However, when considering an
ADT we are more concerned with the operations that can be performed on an array.
Aside from creating a new array, most languages provide only two standard operations
for arrays, one that retrieves a value, and a second that stores a value. ADT 2.1 shows a
definition of the array ADT.

The Create(j, list) function produces a new, empty array of the appropriate size.
All of the items are initially undefined. Retrieve accepts an array and an index. It

ADT Arrayis | _
objects: A set of pairs <index, value> where for each value of index there is a value
from the set item. Index is a finite ordered set of one or more dimensions, for example,

{0, --+ , n—1} for one dimension, {(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (2, O), (2,
1), (2, 2)} for two dimensions, etc.
functions: ,

for all A € Array, i € index, x € item, J, size € integer

return an array of j dimensions where list

is a j-tuple whose ith element is the the size of
the ith dimension. Items are undefined.

if (i € index) return the item associated

with index value i in array A

clse return error

Array Create(§, list)

Item Retrieve(A,)

Array Store(A,i.x) = if (i in index)
return an array that is identical to array
A except the new pair <i, x> has been
inserted else return error.
end Array

ADT 2.1: Abstract Data Type Array

returns the value associated with the index if the index is valid, or an error if the index is
invalid. Store accepts an array, an index, and an item, and returns the original array aug-
mented with the new <index, value> pair. The advantage of this ADT definition is that it
clearly points out the fact that the array is a more general structure than "a consecutive
set of memory locations.”

2.1.2 ArraysinC

We restrict ourselves iﬁitially to one-dimensional arrays. A one-dimensional array in C
is declared implicitly by appending brackets to the name of a variable. For example,

int list[5], *plist([5];

declares two arrays each containing five elements. The first array defines five integers,
while the second defines five pointers to integers. In C all arrays start at index 0, so
list]0), list[1), dist[2), tist[3], and list[4] (abbreviated list [0:4]) are the names of the five
array elements, each of which contains an integer value. Similaly, plist[0:4] are the
names of five array elements, each of which contains a pointer to an integer.

Arrays 53

We now consider the implementation of one-dimensional arrays. When the com-
piler encounters an array declaration such as the one used abave to create list, it allocates
five consecutive memory locations. Each memory location is large enough to hold a sin-
gle integer. The address of the first element list[0], is called the base address. If the size
of an integer on your machine is denoted by sizeof(int), then the memory address of
list [i] is o + i*sizeof (int), where o is the base address. In fact, when we write list[{] in
a C program, C interprets it as & pointer to an integer whose address is list[i] is o +
i*sizeof (int). Observe that there is a difference between a declaration such as

int *listl;
and
int list2[5]1;

The variables list] and list2 are both pointers to an int, but in the second case five
memory locations for holding integers have been reserved. list2 is a pointer to fist2[0]
and list2+i is a pointer to lisf2[i]. Notice that in C, we do not multiply the offset i with
the size of the type to get to the appropriate element of the array. Thus, regardless of the
type of the array list2, it is always the case that (list2 +i) equals &list2[i]. So,
*(list2 + i) equals Hise2[i].

It is useful to consider the way C treats an array when it is a parameter to a func-

tion. All parameters of a C function must be declared within the function. However, the
range of a one-dimensional array is. defined only in the main program since.new storage
for an array is not allocated within a function. If the size of a one-dimensional array is
needed, it must be either passed into the function as an argument or accessed as a glotal
variable, _ :
Consider Program 2.1. When sum is invoked, input = &input [0] is 'cciipied into a
temporary location and associated with the formal parameter list. When Jist[i] accurs on
the right-hand side of the equals sign, a dereference takes place and the value pointed at
by (list + i} is returned. If list]i] appears on the left-hand side of the equals sign, then the
value produced on the right-hand side is stored in the location (list + i). Thus in C, array
parameters have their values altered, despite the fact that the parameter passing is done
using call-by-value.

Example 2.1 [One-dimensional array addressing]: Assume that we have the following
declaration:

int one{] = {0, 1, 2, 3, 4};

We would like to write a function that prints out both the address of the ith ele-
ment of this array and the value found at this address. To do this, prinfl (Program 2.2)
uses pointer arithmetic. The function s invoked as print!(&one [0],5). As you can see
from the printf statement, the address of the ith element is simply ptr + i. To obtain the

#define MAX_SIZE 100

float sum(float [], int);
float input [MAX-SIZE)], answer;
void main{void)}

{

int i;
for {i = 0; i < MAX_SIZE; i++)
input[i} = 1i;

answer = sum(input, MAX_SIZE};
printf("The sum is: %f\n", answer);
}
float sum{float list[], int n)
{

int i;
float tempsum = 0;
for (i = 0; 1 < n; i++)

tempsum += list[i];
return tempsum;

}

Program 2.1: Example array program

value of the ith element, we use the dereferencing operator, *. Thus, *(ptr + i) indicates
that we want the contents of the ptr + i position rather than the address.

void printl(int *ptr, int rows)
{/* print cut a one-dimensional array using a pointer */

int i;
printf ("Address Contents\n");
for (i = 0; i < rows; i++)

printf {"%8u%5d\n", ptr + i, *(ptr + i)};
printf ("\n");
}

Program 2.2: One-dimensional array accessed by address

Figure 2.1 shows the results we obtained when we ran print/. Notice that the
addresses increase by four because each int is 4 bytes on our machine. O

Dynamically Allocated Arrays 55

Address Contents
12244868 0
12344872 1
12344876 2
12344880 3
12344884 4

Figure 2.1: One-dimensional array addressing

22 DYNAMICALLY ALLOCATED ARRAYS

22.1 ONE-DIMENSIONAL ARRAYS

In Program 1.4, we defined the constant MAX_SIZE to have the value 101. As a result,
the program can be used to sort a collection of up to 101 numbers. If the user wishes to
sort more than 101 numbers, we have to change the definition of MAX-SIZE using some
larger value and recompile the program. How large should this new value be? If we set
MAX_SIZFE to a very large number (say several million), we reduce the likelihood the
program will fail at run time because the input value of n is less likely to exceed this
large value of MAX_SIZE. However, we increase the likelihood the program may fail to
compile for lack of memory for the array list. When writing computer programs, we
often find ourselves in a situation where we cannot reliably determine how large an array
to use. A good solution to this problem is to defer this decision to run time and allocate
the array when we have a good estimate of the required array size. So, for example, we
could change the first few lines of function main of Program 1.4 to:

int i,n, *list;
printf ("Enter the number of numbers to generate: ");
scanf ("%4d", &n);
ifin<1) {
fprintf (stderr, "Improper value of n\n"};
exit (EXIT_FATILURE); '
}
MALLOC(list, n * sizeof (int)};

Now, the program fzils only when n<1 or we do not have sufficient memory to hold the
list of numbers that are to be sorted.

222 TWO-DIMENSIONAL ARRAYS

C uses the so-called array-of-arrays representation to represent a multidimensional array.
In this representation, a two-dimensional array is represented as a one-dimensional array
in which each element is, itself, a one-dimensional array. To represent the two-
dimensional array '

int x[3][5]);

we actually create a one-dimensional array x whose length is 3; each element of x is a
one-dimensional array whose length is 5. Figure 2.2 shows the memory structure. Four
separate memory blocks are used. One block (the lightly shaded block) is large enough
for three pointers and each of the remaining blocks is large enough for 5 ints,

Figure 2.2: Array-of-arrays representation

C finds the element x{f]{j] by first accessing the pointer in x[i]. This pointer
gives us the address, in memory, of the zeroth element of row 7 of the array. Then by
_adding j*sizeof (int) to this pointer, the address of the [j]th element of row i (i.e., ele-
ment x[i][j]) is determined. Program 2.3 gives a function that creates a two-
dimensional array at run time.

This function may be used in the following way, for example. The second line
allocates memory for a 5 by 10 two-dimensional array of integers and the third line
assigns the value 6 to the {2][4] element of this array.

int **myArray;
myArray = makeZdArray({3,10};
myArray[2][4] = 6;

C provides two additional memory allocation functions—calloc and realloc—that
are useful in the context of dynamically allocated arrays. The function calloc allocates a
user-specified amount of memory and initializes the allocated memory to O (i.e., all

Dynamically Allocated Arrays 57

int** makeZdArray(int rows, int cols)
{/* create a twc dimensional rows X cols array */
int **x, 1i;

/* get memory for row pointers */
MALLOC(x, rows * sizeof (*x));;

/* get memory for each row */

for (1 = 0; 1 < rows; i++)
MALLOC(x[1], cols * sizeof{**x));

return x;

}

Program 2.3: Dynamically create a two-dimensional array

allocated bits are set to 0); a pointer (o the start of the allocated memory is returned. In
case there is insufficient memory to make the allocation, the returned value is NULL. So,
for example, the statements

int *x;
x = calloc{n, sizeof(int)};

could be used to define a one-dimensional array of integers; the capacity of this array is
n, and x [0:n—1] are initially 0. As was the case with malloc, it is useful to define the
macro CALLOC as below and use this macro to write clean robust programs.

#define CALLOC{p,n,s)\
if (M{{p) = calloc(n,s))) {\
fprintf(stderr, "Insufficient memory"); \
exit (EXIT_FAILURE) ; \
}

The function realioc resizes memory previously allocated by either malloc or cal-
loc. For example, the statement

realloc{p, s) _ -
changes the size of the memory block pointed at by p to s. The contents of the first

min{s, oldSize} bytes of the block are unchanged as a result of this resizing. When
's>0ldSize the additional s — oldSize have an unspecified value and when s<oldSize, the

rightmost olsSize — s bytes of the old block are freed. When realloc is able to do the
resizing, it returns a pointer to the start of the new block and when it is unable to do the
resizing, the old block is unchanged and the function returns the value NULL.

As with malloc and calloc, it is useful to define a macro REALLOC as below.

#define REALLOC({p, s)\
if (' {(p) = realloc(p,s})) {\
fprintf (stderr, "Insufficient memory"};\
exit (EXIT_FAILURE);\ '
}

A three-dimensional array is represented as a one-dimensional array, each of
whose clements is a two-dimensional array. Each of these two-dimensional arrays is
represented as shown in Figure 2.2

EXERCISES

1. Make the fewest number of changes to Program 2.3 so as to obtain a function that
creates a two-dimensional array ali of whose elements are set to 0. Test your new
function.

2. Let length [i] be the desired length (size or number of elements) of row i of a two-
dimensional array. Write a funtion similar to Program 2.3 to create a two-
dimensional array such that row i has length [i] elements, 0 <i < rows. Test your
code.

3. Rewrite the matrix add function of Program 1.16 using dynamically allocated
arrays. The header for your function should be

void add{int **a, int **b, int **¢, int rows, int cols}

Test your function

4. Rewrite the matrix multiplication function of Program 1.20 using dynamically
allocated arrays. The header for your function should be

void mult(int **a, int **b, int **c, int rows)

where each matrix is a rows X rows matrix, Test your function

5. Rewrite the matrix transpose function of Program 1.22 using dynamically allo-
cated arrays. The header for your function should be

void transpeose{int **a, int rows)

Test your function

Structures and Unions 59

6. Write a matrix transpose function for matrices that may not be square. Use dynam-
ically allocated arrays. The header for your function should be

veld transpose(int **a, int **b, int rows, int cols)
where a is the rows x cols matrix that is to be transposed and b is the transposed

matrix computed by the function. Note that the transposed matrix is a cols X rows
matrix. Test your function

2.3 STRUCTURES AND UNIONS

2,31 Structures

Arrays are collections of data of the same type. In C there is an alternative way to group
data that permits the data to vary in type. This mechanism is called the struet, short for
structure. A structure (called a record in many other programming languages) is a col-
lection of data items, where each item is identified as to its type and name. For example,

struct {
char name[10];
int age;
float salary;
} person;

creates a varizble whose name is person and that has three fields:

. a name that is a character array
. an integer value representing the age of the person
. a float value representing the salary of the individual

We may assign values to these fields as below. Notice the use of the . as the structure
member operator. We use this operator to select a particular member of the structure,

strepy (person.name, " james") ;
person.age = 1G;
person.salary = 35000;

We can create our own structure data types by using the typedef statement as
below:

typedef struct {
char name[10];
int age; float salary;
} humanBeing;

This says that humanBeing is the name of the type defined by the structure definition,
and we may follow this definition with declarations of variables such as:

humanBeing personl, person2;
We might have a program segment that says:

if (strcmp(personl.name, personZ.name)})

printf{"The two people dc not have the same namei\n"};
else

printf ("The twe people have the same name\n"};

It would be nice if we could write if (personl == personZ} and have the entire
structure checked for equality, or if we could write personl = person2 and have
that mean that the value of every field of the structure of person2 is assigned as the
value of the corresponding field of person 1. ANSI C permits structure assignment, but
most earlier versions of C do not. For older versions of C, we are forced to write the
more detailed form:
|

strepy (personl.name, perscnZ.name);

personl.age = personZ.age;

perscnl.salary = personZ.salary;

While structures cannot be directly checked for equality or inequality, we can
write a function (Program 2.4) to do this. TRUE and FALSE are defined as:

#define FALSE O
#define TRUE 1

A typical function call might be:

if (humansEqual {personl,person2))

printf ("The two human beings are the same\n");
else

printf ("The two human beings are not the same\n");

Structures and Unions 61

int humansEqual (humanBeing personl,
humanBeing person2)
{/* return TRUE if personl and person2 are the same human
being otherwise return FALSE */
if (strcmp(personl.name, person2.name))
return FALSE;

if (personl.age != personZ.age)
return FALSE;
if {personl.salary !'= perscnZ.salary)

return FALSE;
return TRUE;

Program 2.4: Function to check equality of structures

We can also embed a structure within a structure. For example, associated with
our humanBeing structure we may wish to include the date of his or her birth. We can do
this by writing:

typedef struct |
int month;
int day;:
int year;
} date;

typedef struct {
char name[10];
int age;
float salary;
date dob;
} humanBeing;

A person born on February 11, 1944, would have the values for the date struct set as:

personl.dob.month = 2;
personl.dob.day = 11;
personl.dcob.year = 1944;

23.2 Unions

Continuing with our hAumanBeing example, it would be nice if we could distinguish
between males and females. In the case of males we might ask whether they have a
beard or not. In the case of females we might wish to know the number of children they
have borne. This gives rise to another feature of C called a union. A union declaration
is similar to a structure, but the fields of a union must share their memory space. This
means that only one field of the union is "active” at any given time. For example, to add
different fields for males and females we would change our definition of humanBeing to:

typedef struct {
enum tagField {female, male} sex;
union |
int children;
int beard ;
Vo
} sexType;
typedef struct |
' char namei{lQj];
int age;
float salary;
date dob;
sexType sexInfo;
} humanBeing;
humanBeing personl, person2;

We could assign values to personl and person? as:

personl.sexInfo.sex = male;

perscnl.sexInfo.u.beard = FALSE;
and

persconZ.sexInfo.sex = female;

persconz.sexinfo.u.children = 4;

Notice that we first place a value in the tag field. This atllows us to determine which field
in the union is active. We then place a value in the appropriate field of the union. For
example, if the value of sexInfo.sex was male, we would enter a TRUE or a FALSE in the
sexinfo.u.beard field. Similarly, if the person was a female, we would enter an integer
value in the sexfnfo.u.children field. C does not verify that we use the appropriate field.
For instance, we could place a value of female in the sexInfo.sex field, and then proceed
to place a value of TRUE in the sexinfo.u.beard field. Although we know that this is not
appropriate, C does not require us to use the correct fields of a union.

Structures and Unions 63

2.3.3 Internal Implementation Of Structures

In most cases you need not be concerned with exactly how the C compiler will store the
fields of a structure in memory. Generally, if you have a structure definition such as:

struct {int i,7j; fleoat a, b;};
or
struct {int 1i; int j; float a; float b; };

these values will be stored in the same way using increasing address locations in the
order specified in the structure definition. However, it is important to realize that holes
or padding may actually occur within a structure to permit two consecutive components
to be properly aligned within memory.

The size of an object of a struct or union type is the amount of storage necessary
to represent the largest component, including any padding that may be required. Struc-
tures must begin and end on the same type of memory boundary, for example, an even
byte boundary or an address that is a multiple of 4, 8, or 16.

2.3.4 Self-Referential Structures

A self-referential structure is one in which one or more of its components is a pointer to
itself)) Self-referential structures usually require dynamic storage management routines
(malloc and free) to explicitly obtain and release memory. Consider as an example:

typedef struct {
char data;
struct list *link ;
} list;

Each instance of the structure /isz will have two components, data and link. data is a sin-
gle character, while link is a pointer to a list structure. The value of link is either the
‘address in memory of an instance of list or the null pointer. Consider these statements,
which create three structures and assign values to their respective fields:

list iteml, itemZz, item3;

iteml.data = fa';
item2.data = "b’;
item3.data = 'c’;

[

iteml.link item2.link = item3.link = NULL;

Structures item 1, item 2, and ifem 3 each contain the data item a, b, and ¢, respectively,

and the null pointer. We can attach these structures together by replacing the null link
field in item 2 with one that points to item 3 and by replacing the null link field in item 1
with one that points to item 2.

iteml.link
item2.link

&item2;
&item3;

We will see more of this linking in Chapter 4.

~ EXERCISES

1. Develop a structure to represent the planets in the solar system. Each planet has
fields for the planet’s name, its distance from the sun (in miles), and the number of
moons it has. Place items in each the fields for the planets: Earth and Venus.

2. Modify the humanBeing structure so that we can include different information
based on maritai status. Marital status should be an enumerated type with fields:
single, married, widowed, divorced. Use a union to include different information
based on marital status as follows:

. Single. No information needed.

. Married. Include a marriage date field.

. Widowed. Include marriage date and death of spouse date ficlds.
. Divarced. Include divorce date and number of divorces fields.

Assign values to the fields for some person of type humanBeing.

3. Develop a structure to represent each of the following geometric objects: rectan-
gle, triangle, and circle.

24 POLYNOMIALS

24.1 The Abstract Data Type

Arrays are not only data structures in their own right, we can also use them to implement
other abstract data types. For instance, let us consider one of the simplest and most com-
monly found data structures: the ordered or linear list. We can find many examples of
this data structure, including:

* Days of the week: (Sunday, Monday, Tuesday, Wednesday, Thursday, Friday,
Saturday)

® Values in a deck of cards: (Ace, 2, 3,4, 5,6,7, 8,9, 10, Jack, Queen, King)

Polynomials 65

¢ Floors of a building: (basement, lobby, mezzanine, first, second)
® Years the United States fought in World War II: (1941, 1942, 1943, 1944, 1945)
* Years Switzerland fought in World War IT: ()

Notice that the years Switzerland fought in World War I1 is different because it
contains no items. It is an example of an empty list, which we denote as (). The other
lists all contain items that are written in the form (itemg, item |, -+ , item,_|).

‘We can perform many operations on lists, including:

* Tinding the length, n, of a list.

* Reading the itemns in a list from left to right {or right to left).
® Retrieving the ith item from alist, 0 £i < n.

® Replacing the item in the ith position of a list, 0 <i < n.

® Inserting a new item in the ith position of a list, 0 £/ < n. The items previously num-
beredi,i+1, - -+, n—1 become items numbered i +1,i 42, - - - , n.

¢ Deleting an item from the ith position of a list, 0 <i < n. The items numbered i +1,
- ,n—1 become items numbered £, i +1, --- ,n-2.

Rather than state the formal specification of the ADT list, we want to explore
briefly its implementation. Perhaps, the most common implementation is to represent an
ordered list as an array where we associate the list element, item;, with the array index i.
We call this a sequential mapping because, assuming the standard implementation of an
array, we are storing item,, item; | into consecutive slots i and i +1 of the array. Sequen-
tial mapping works well for most of the operations listed above., Thus, we can retrieve
an item, replace an item, or find the length of a list, in constant time. We also can read
the items in the list, from either direction, by simply changing subscripis in a controlled
way. Only insertion and deletion pose problems since the sequential allocation forces us
to move items so that the sequential mapping is preserved. It is precisely this overhead
that leads us to consider nonsequential mappings of ordered lists in Chapter 4.

Let us jump right into a problem requiring ordered lists, which we will solve by
using one-dimensional arrays. This problem has become the classical example for
motivating the use of list processing techniques, which we will see in later chapters.
Therefore, it makes sense to look at the problem and see why arrays offer only a partially
adequate solution. The problem calls for building a set of functions that allow for the
manipulation of symbolic polynomials. Viewed from a mathematical perspective, a poly-
nomial is a sum of terms, where each term _has a form ax®, where x is the variable, a is
the coefficient, and e is the exponent. Two example polynomials are:

Ax)=3x2 + 2% +4 and B(x) = x* + 10x° +3x2 + |

The largest {or leading) exponent of a polynomial is called its degree. Coefficients that

are zero are not displayed. The term with exponent equal to zero does not show the vari-
able since x raised to a power of zero is 1. There are standard mathematical definitions
for the sum and product of polynomials. Assume that we have two polynomials, A (x) =
Yaix'and B(x} =Y bx' then:

A(x)+B(x)=Y(a; + b)x
A@) B(x)=Y(a;x" T(b;x')

Similarly, we can define subtraction and division on polynomials, as well as many other
operations.

We begin with an ADT definition of a polynomial. The particular operations in
part are a reflection of what will be needed in our subsequent programs to manipuiate
polynomials. The definition is contained in ADT 2.2.

24.2 Polynomial Representation

We are now ready to make some representation decisions. A very reasonable first deci-
sion requires unique exponents arranged in decreasing order. This requirement consider-
ably simplifies many of the operations. Using our specification and this stipulation, we
can write a version of Add that is closer to a C function (Program 2.5), but is stll
representation-independent.

This algorithm works by comparing terms from the two polynomials until one or
both of the polynomials becomes empty. The switch statement performs the comparis-
ons and adds the proper term to the new polynomial, 4. If one of the polynomials
becomes empty, we copy the remaining terms from the nonempty polynomial into d.
With these insights, we now consider the representation question more carefully.

One way to represent polynomials in C is to use typedef to create the type polyno-
mial as below:

#define MAX-DEGREE 101 /*Max degree cof polynomial+l*/
typedef struct ({

int degree;

float coef [MAX_DEGREE]:;

} polynomial;

n
Now if a is of type polynomial and n < MAX_DEGREE, the polynomial A (x) = ¥ a;x'
i=0
would be represented as;

a,degree =n
a.coef[i] =a,,;, 0 i €n

Polynomials 67

ADT Polynomial is

objects: p(x) = a;x°' + -+ +a,x™; a set of ordered pairs of <e;, a;> where a; in

Coefficients and ¢; in Exponents, e; are integers >= 0

functions:

for all poly, polyl, poly2 € Polynomial, coef € Coefficients, expon € Exponents

Polynomial Zero()

Boolean 1sZero(poly)
Coefficient Coef(poly,expon)
Exponent LeadExp(poly)

Polynomial Attach(poly, coef, expon)

Polynomial Remove(poly, expon)

Polynomial SingleMult(poly, coef, expon)
Polynomial Add(poly1, poly2)

Polynomial Mult(poly1, poly2)

end Polynomial

return the polynomial,
px)=0

if (poly) return FALSE

else return 7RUE

if (expon € poly) return its
coeflicient else return zero
return the largest exponent in
poly

if (expon € poly) return error
else return the polynomial poly
with the term <coef, expon>
inserted

if (expon € poly)

return the polynomial poly with
the term whose exponent is
expon deleted

else return error

return the polynomial

poly - coef - x*¥°"

return the polynomial

polyl + poly2

return the polynomial

polyl - poly2

ADT 2.2: Abstract data type Polynomial

In this representation, we store the coefficients in order of decreasing exponents,
such that a . coef [i] is the coefficient of x"~ provided a term with exponent n—i exists;
otherwise, a . coef [i] = 0. Although this representation leads to very simple algorithms
for most of the operations, it wastes.a lot of space. For instance, if a.degree <<
MAX_DEGREFE, (the double "less than" should be read as "is much less than"), then we
will not need most of the positions in a.coef [MAX_DEGREEFE)]. The same argument

/* d = a + b, where a, b, and d are polynomials */
d = Zero{) :
while (! IsZerc(a) && ! IsZero(b)) do {
switch COMPARE (LeadExp(a), LeadExp(b)) {
case —1: d =
Attach(d, Coef (b, LeadExp (b)), LeadExp{b) };
b = Remove (b, LeadExp(b));
break;
case 0: sum = Coef{ a, LeadExp(a))
+ Coef (b, LeadExp(b});
if (sum) {
Attach(d, sum, LeadExp (a));
a = Remove(a,LeadExp(a)};
b = Remove (b, LeadExp(b)};
1
break;
case 1l: d =
Attachid, Coef (a, LeadExp{a)), LeadExp(a)};
a = Remove(a,LeadExp{a));

}

insert any remaining terms of a or b into d

Program 2.5: Initial version of padd function

applies if the polynomial is sparse, that is, the number of terms with nonzero coefficient
is small relative to the degree of the polynomial. To preserve space we devise an alter-

nate representation that uses only one global array, rerms, to store all our polynomials.
The C declarations needed are:

MAX_TERMS 100 /*size of terms array*/
typedef struct {
float coef;
int expon;
} polynomial;
pelynomial terms [MAX-TERMS];
int avail = 0;

Consider the two polynomials A (x) = 2x'%% + 1 and B(x) = x* + 10x* + 322 + 1.
Figure 2.3 shows how these polynomials are stored in the array terms. The index of the

Polynomials 69

first term of A and B is given by startA and startB, respectively, while finishA and finishB
give the index of the last term of A and B. The index of the next free location in the
array is given by avail. For our example, startA =0, finishA =1, startB =2,
finishB = 5, and avail = 6.

startA finishA startB finishB avail
L 1 l \ l
coef 2 1 1 10 3 1
exp 1000 0 4 3 2 0
0 1 2 3 4 5 6

Figure 2.3: Array representation of two polynomials

This representation does not impose any limit on the number of polynomials that
we can place in terms. The only stipulation is that the total number of nonzero terms
must be no more than MAX_TERMS. Tt is worth pointing out the difference between our
specificatton and our representation. Our specification used poly to refer to a polyno-
mial, and our representation translated poly into a <start, finish > pair, Therefore, to use
A (x) we must pass in startA and finishA. Any polynomial A that has n nonzero terms has
startA and finishA such that finishA = startA +n— 1.

Before proceeding, we should evaluate our current representation. Is it any better
than the representation that uses an array of coefficients for each polynomial? It cer-
tainly solves the problem of many zero terms since A (x) = 2x'® + 1 uses only six units
of storage: one for startA, one for finishA, two for the coefficients, and two for the
exponents, However, when all the terms are nonzero, the current representation requires
about twice as much space as the first one. Unless we know before hand that each of our
polynomials has few zero terms, our current representation is probably better.

24.3 Polynomial Addition

We would now like to write a C function that adds two polynomials, A and B,
represented as above to obtain D = A + B, To produce D (x), padd (Program 2.6) adds
A{x)and B (x)} term by term. Starting at position avail, attach (Program 2.7) places the
terms of D into the array, terms. If there is not enough space in ferms to accommodate
D, an error message is printed to the standard error device and we exit the program with
an error condition.

void padd(int startA,int finishA,int startB, int finishB,
int *startD,int *finishD}
{/* add A(x) and B(x) to obtain D(x) */
flcat coefficient;
*startD = avail;
while (startdA <= finishA && startB <= finishB)
switch (COMPARE {terms [starth] .expon,
terms[startB].expon}) |
case -1: /* a expon < b expon */
attach(terms[startB].coef,terms[startB].expon);
startB++;
break;
case 0: /* equal exponents */
coefficient = terms([startA].coef +
terms [startB] .coef;
if (coefficient)
attach(coefficient, terms[startA].expon);
starta++;
startB++;
break;
case 1: /* a expon > b expon */
attach(terms[starta] .coef,termsi{startA] .expon);
startA++;
}
/* add in remaining terms of A(x} */
for(; startA <= finishA; startA++)
attach(terms{startA] .coef, terms{startA] .expon);
/* add in remaining terms of B(x} */
for(; startB <= finishB; startB++}
attach{terms[startB].coef, terms[startB}.expon);
*finishD = avail-1;

Program 2.6: Function to add two polynomials

Analysis of padd: Since the number of nonzero terms in A and in B are the most impor-
tant factors in the time complexity, we will carry out the analysis using them,. Therefore,
let m and n be the number of nonzero terms in A and B, respectively. If m>0and n >0,
the while loop is entered. Each iteration of the loop requires O(1) time. At each itera-
tion, we increment the value of startA or startB or both. Since the iteration terminates

Polynomials 71

void attach{float coefficient, int exponent}
{/* add a new term to the polynomial */
if (avail >= MAX_TERMS) |
fprintf (stderr,"Too many terms in the polynomial\n”);
exit (EXIT_FAILURE) ;
}
terms[avail] .coef = cocoefficient;
terms[avail++] .expon = exponent;

}

Program 2.7: Function to add a new term

when either startA or startB exceeds finishA or finishB, respectively, the number of itera-
tions is bounded by m + n — 1. This worst case occurs when:

A(x)=Y x¥and B(x) = ¥ x%+!
i=0 i=0

The time for the remaining two loops is bounded by O(n + m) because we cannot
iterate the first loop more than m times and the second more than » times. So, the asymp-
totic computing time of this algorithm is O(n +m). O

Before proceeding let us briefly consider a few of the problems with the current
representation. We have seen that, as we create polynomials, we increment avail until it
equals MAX_TERMS. When this occurs, must we quit? Given the current representa-
tion, we must unless there are some polynomials that we no longer need. We could write
a compaction function that would remove the unnecessary polynomials and create a
large, continuous available space at one end of the array. However, this requires data
movement which takes time. In addition, we also must change the values of start and
finish for every polynomial that is moved. In Chapter 3, we let you experiment with
some "simple” compacting routines.

EXERCISES
1. Consider the type definition

typedef struct {
int degree;
int capacity;
float* coef;
} dpolynomial;

where coef is the dynamically allocated one-dimensional array
coef [O:capacity —1]. Compare this representation for polynomials with the one
using the type polynomial.

2, Wrte functions readPoly and printPoly that allow the user to create and print
polynomials.

3. Write a function, pmult, that multiplies two polynomials. ‘Figure out the comput-
ing time of your function.

4. Write a function, peval, that evaluates a polynomial at some value, x,. Try to
minimize the number of operations.

5. LetA@=x" +x7 2+ - +x?2+x%and B() =x¥" +x¥ + - + x4+ 1
For these polynomials, determine the exact number of times each statement of
padd is executed.

6. The declarations that follow give us another representation of the polynomial
ADT. terms|i][0].expon gives the number of nonzero terms in the ith polynomial.
These terms are stored, in descending order of exponents, in positions terms [i][1],
terms [i][2], - --. Create the functions readPoly, printPoly, padd, and pmult for
this representation. Is this representation better or worse than the representation
used in the text? (You may add declarations as necessary.) -

#define MAX_TERMS 101 /* maximum number of terms + 1*/
#define MAX_POLYS 15 /* maximum number of
polynomials*/
typedef struct {
float coef;
int expon;
} polynomial;
polynomial terms[MAX_POLYS] [MAX_TERMS];

2.5 SPARSE MATRICES

2.5.1 The Abstract Data Type

We now turn our attention to a mathematical object that is used to solve many problems
in the natural sciences, the matrix. As computer scientists, our interest centers not only
on the specification of an appropriate ADT, but also on finding representations that let us
efficiently perform the operations described in the specification.

In mathematics, a matrix contains m rows and n columns of elements as illustrated
in Figure 2.4. In this figure, the elements are numbers. The first matrix has five rows and
three columns; the second has six rows and six columns. In general, we write m X n

Sparse Matrices 73

(read "m by r") to designate a matrix with m rows and n columns. The total number of
elements in such a matrix is mn. I m equals n, the matrix is square.

col 0 col 1 col 2 col0 col1 col2 col3 col4 col 5
row0 [27 3 4] row0[15 0 0 22 0 -15 |
row 1 6 82 -2 rowl{ 0 11 3 0 0 0
row2 (109 -64 11 row2 | 0 0 0 -6 0 0
row 3 12 8 9 row3| O 0 0 0 0
rowd |48 27 47 row4 | 91 0 0 0 0

- - rowS| 0 0 28 0 0
(a) (b

Figure 2.4: Two matrices

When a matrix is represented as a two-dimensional array defined as
a|MAX_ROWS|[MAX_COLS), we can locate quickly any element by writing a[{][/],
where { is the row index and j is the column index. However, there are some problems
with this representation. For instance, if you look at the matrix of Figure 2.4(b), you
notice that it contains many zero entries. We call this a sparse matrix. Although it is
difficult to determine exactly whether a matrix is sparse or not, intuitively we can recog-
nize a sparse matrix when we see one. In Figure 2.4(b), only 8 of 36 elements are
nonzero and that certainly is sparse. When a sparse matrix is represented as a two-
dimensional array, we waste space. For example, consider the space requirements neces-
sary to store a 1000 x 1000 matrix that has only 2000 non-zero elements. The
corresponding two-dimensional array requires space for 1,000,000 elements! We can do
much better by using a representation in which only the nonzero elements are stored.

Before developing a particular representation, we first must consider the opera-
tions that we want to perform on these matrices. A minimal set of operations includes
matrix creation, addition, multiplication, and transpose. ADT 2.3 contains our
specification of the matrix ADT.,

ADT SparseMartrix is

objects: a set of triples, <row, column, value>, where row and column are integers and
form a unique combination, and value comes from the set item.

functions:

for all a, b € SparseMatrix, x € item, i, j, maxCol, maxRow € index

SparseMatrix Create(maxRow, maxCol) ::=

SparseMatrix Transpose(a) ::=

SparseMatrix Add(a, b) ::=

SparseMatrix Multiply(a, b) ::=

return a SparseMatrix that can hold up to
maxltems = maxRow X maxCol and whose
maximum row size is maxRow and whose
maximum column size is maxCol.

refurn the matrix produced by interchanging
the row and column value of every tripie.

if the dimensions of a and b are the same

return the matrix produced by adding
corresponding items, namely those with
identical row and column values.

else return error

if number of columns in a equals number of
rows in b

return the matrix 4 preduced by multiplying a
by b according to the formula: d[i1[j]=
Yialilfk] - b[k][j]) where d (i, j) is the (i, jth
element

else return error.

ADT 2.3: Abstract data type SparseMatrix

2.5.2 Sparse Matrix Representation

Before implementing any of the ADT operations, we must establish the representation of
the sparse matrix. By examining Figure 2.4, we know that we can characterize uniquely
any element within 2 matrix by using the triple <row, col, value >. This means that we
can use an array of triples to represent a sparse matrix. Since we want our transpose
operation to work efficiently, we should organize the triples so that the row indices are in
ascending order. We can go one step further by also requiring that all the triples for any
row be stored so that the column indices are in ascending order. In addition, to ensure

Sparse Matrices 75

that the operations terminate, we must know the number of rows and columns, and the
number of nonzero elements in the matrix. Putting all this information together suggests
that we implement the Create operation as below:

SparseMatrix Create(maxRow, maxCol) ::=

#define MAX_TERMS 101 /* maximum number of terms +1*/
typedef struct {

int col;

int row;

int value;

} term;
term a[MAX TERMS];

Since MAX_TERMS is greater than eight, these statements can be used to
represent the second sparse matrix from Figure 2.4, Figure 2.5(a) shows how this matrix
is represented in the array a. Thus, a [0).row contains the number of rows: @ [0].col con-
tains the number of columns; and a[0l.value contains the total number of nonzero
entries. Positions | through 8 store the triples representing the nonzero entries. The row
index is in the field row; the column index is in the field col: and the value is in the field
value. The triples are ordered by row and within rows by columns,

row col value row c¢ol value

al0] 6 6 8 b[0] 6 6 8
13 0 0 15 [n 0 0 15
[21 0 3 22 [2] 0 4 91
[3] 0 5 -15 [31 l 1 11
[4] 1 1 H (41 2 1 3
i5] 1 2 3 [5] 2 5 28
[6] 2 3 -6 [6] 3 0 22
171 4 0 91 [7] 3 2 -6
8] 5 2 28 8] 5 0 -15

(a) (b)

Figure 2,5: Sparse matrix and its transpose stored as triples

2.5.3 Transposing A Matrix

Figure 2.5(b) shows the transpose of the sample matrix. To transpose a matrix we must
interchange the rows and columns. This means that each element f][j] in the original
matrix becomes element &[f][i] in the transpose matrix. Since we have organized the
original matrix by rows, we might think that the following is a good algorithm for tran-
sposing a matrix:

for each row i
take element <i, j, value> and store it
as element <j, i, value> of the transpose;

Unfortunately, if we process the original matrix by the row indices we will not
know exactly where to place element <j, i, value> in the transpose matrix until we have
processed all the elements that precede it. For instance, in Figure 2.5, we have:

(0,0, 15), whichbecomes (0,0, 15)
(0, 3, 22), which becomes (3,0, 22)
(0,5,-15), whichbecomes (5,0,-15)

H we place these triples consecutively in the transpose matrix, then, as we insert
new triples, we must move elements to maintain the correct order. We can avoid this data
movement by using the column indices to determine the placement of elements in the
transpose matrix. This suggests the following algorithm:

for all elements in column j
place element <i, Jj, wvalue> in
element <j, i, value>

The algorithm indicates that we should "find all the elements in column Q and store
them in row 0 of the transpose matrix, find all the elements in column 1 and store them in
row I, etc.” Since the original matrix ordered the rows, the columns within each row of
the transpose matrix will be arranged in ascending order as well. This algorithm is
incorporated in transpose (Program 2.8). The first array, g, is the original array, while
the second array, b, holds the transpose. :

It is not too difficult to see that the function works correctly. The variable,
currentb, holds the position in b that will contain the next transposed term. We generate
the terms in b by rows, but since the rows in b correspond to the columns in a, we collect
the nonzero terms for row i of b by collecting the nonzero terms from column { of .

Sparse Matrices 77

void transpose{term al[], term bL[])
{/* b is set to the transpose of a */
int n,i,Jj, currentb; ’
n = a[0].value; /* total number of elements */
b[0].row al0l.col; /* rows in b = columns in a */
b[0].col al0)l.row; /* columns in b = rows in a */
b[C].value = n;
if {n > 0) { /* non zero matrix */
currentbh = 1;
for (i = 0; 1 < a[0]l.col; i++)
/* transpose by the columns in a */
for (J = 1; j <= n; Jj++}
/* find elements from the current column */

if (a[]].col == 1} {

/* element is in current column, add it toc b */
Lcurrentb].row = al[j].col;
blcurrentb] .col = aljl.row;
blcurrentb] .value = a[j].value;
currentb++;

}

Program 2.8: Transpose of a sparse matrix

Analysis of transpose: Determining the computing time of this algorithm is easy since
the nested for loops are the decisive factor. The remaining statements (two if statements
and several assignment statements) require only constant time. We can see that the outer
for loop is iterated a [0].col times, where a[0].col holds the number of columns in the
original matrix. In addition, one iteration of the inner for loop requires a [0].value time,
where a[0].value holds the number of elements in the original matrix. Therefore, the
total time for the nested for loops is columns - elements. Hence, the asymptotic time
complexity is O(columns - elements). O

We now have a matrix transpose algorithm with a computing time of
O(columns - elements). This time is a little disturbing since we know that if we
represented our matrices as two-dimensional arrays of size rows X columns, we could
obtain the transpose in O(rows - columns) time, The algorithm to accomplish this has the
simple form: : :

for (j = 0; j < columns; j++)
for (i1 = 0; i < rows; i++)
blil[i] = ali}(d];

The O(columns - elements) time for our transpose function becomes
O(columns? - rows) when the number of clements is of the order columns - rows.
Perhaps, to conserve space, we have traded away too much time. Actually, we can
create a much better algorithm by using a little more storage. In fact, we can transpose a
matrix represented as a sequence of triples in O(columns + elements) time. This algo-
rithm, fastTranspose (Program 2.9), proceeds by first determining the number of ele-
ments in each column of the original matrix. This gives us the number of elements in
each row of the transpose matrix. From this information, we can determine the starting
position of each row in the transpose matrix. We now can move the elements in the origi-
nal matrix one by one into their correct position in the transpose matrix. We assume that
the number of columns in the original matrix never exceeds MAX_COL.

void fastTranspose(term al[}, term b[])}
{/* the transpcse of a is placed in b */
int rowTerms [MAX_COL], startingPos[MAX-CCL];
int 1i,Jj, numCols = a{0].col, numlTerms = al[0].value;
b[0].row = numCols; b[0].col = al[0].row;
b[0] .value = numTerms;
if {(numTerms > Q) { /* nonzero matrix */

for (i = 0; 1 < numCols; i++)
rowlerms[i] = 0;
for (i = 1; i <= numTerms; i++)

rowlerms[a[i].col]++;
startingPos([C] = 1;
for (i = 1; i < numCols; i++)
startingPos[i] =
startingPos[i-1] + rowTerms[i-1];

for (i = 1; 1 <= numTerms; i++) {
j = startingPos([a[i].col]++;
b[j]l.row = ali].col; b[j]l.col = alil.row;
b[j].value = a[i}.value;

}

Program 2.9: Fast transpose of a sparse matrix

Sparse Matrices 79

Analysis of fastTranspose: We can verify that fastTranspose works correctly from the
preceding discussion and the observation that the starting point of row i, i > 1 of the tran-
spose matrix is rowTerms[i—1] + startingPos[i—1], where rowTerms[i-1] is the number of
elements in row i—1 and startingPos[i—1] is the starting point of row i—1. The first two
for loops compute the values for rowTerms, the third for loop carries out the computa-
tion of startingPos, and the last for loop places the triples into the transpose matrix.
These four loops determine the computing time of fastTranspose. The bodies of the
loops are executed numCols, numiTerms, numCols — 1, and numTerms times, respectively.
Since the statements within the loops require only constant time, the computing time for
the algorithm is O(columns + elements). The time becomes O(columns - rows) when the
number of elements is of the order columns - rows. This time equals that of the two-
dimensional array representation, although fastTranspose has a larger constant factor.
However, when the number of elements is sufficiently small compared to the maximum
of columns - rows, fastTranspose is much faster. Thus, in this representation we save
both time and space. This was not true of transpose since the number of elements is usu-
ally greater than max{celumns, rows} and columns - elements is always at least
columns - rows. In addition, the constant factor for transpose is bigger than that found in
the two-dimensional array representation. However, transpose requires less space than
fastTranspose since the latter function must allocate space for the rowTerms and starting-
Pos arrays. 'We can reduce this space to one array if we put the starting positions into the
space used by the row terms as we calculate each starting position. O

If we try the algorithm on the sparse matrix of Figure 2.5(a), then after the execu-
tion of the third for loop, the values of rowTerms and starting Pos are:

0 [21 381 [41 I3}
rowTerms = 2 | 2 2 0 1
startingPos = 1 3 4 6 8

The number of entries in row { of the transpose is contained in rowTerms[i]. The starting
position for row i of the transpose is held by starting Pos{i].

2.54 Matrix Multiplication

A second operation that arises frequently is matrix multiplication, which is defined
below.

Definition: Given A and B where A is m X n and B is n X p, the product matrix I} has
dimension m x p. 1ts <i, j>element is :

n-1

dj= Y ag by
k=0

forO<i<mand0<j<p.0O

The product of two sparse matrices may no longer be sparse, as Figure 2.6 shows,

Figure 2.6: Multiplication of two sparse matrices

We would like to multiply two sparse matrices represented as an ordered list (Fig-
ure 2.5). We need to compute the elements of D by rows so that we can store them in
their proper place without moving previously computed elements. To do this we pick a
row of A and find all elements in column jof Bfor j=0, 1, '+ , colsB — 1. Normally,
we would have to scan all of B to find all the elements in column j. However, we can
avoid this by first computing the transpose of B. This puts all column elements in con-
secutive order. Once we have located the elements of row { of A and column j of B we
just do a merge operation similar to that used in the polynomial addition of Section 2.2.
(We explore an alternate approach in the exercises at the end of this section.}

To obtain the product matrix £, mmult (Program 2.10) multiplies matrices A and B
using the strategy outlined above. We store the matrices A, B, and D) in the arrays a, b,
and d, respectively. To place a triple in 4 and to reset sum to 0, mimult uses storeSum
{Program 2.11). In addition, mmulr uses several local variables that we will describe
briefly. The variable row is the row of A that we are currently multiplying with the
columns in B. The variable rowBegin is the position in a of the first element of the
current row, and the variable column is the column of B that we are currently multiplying
with a row in A. The variable totufD is the current number of elements in the product
matrix D). The variables i and j are used to examine successively elements from a row of
A and a column of B. Finally, the variable newB is the sparse matrix that is the transpose
of b. Notice that we have introduced an additional term into both a (a[totalA+1].row =
rowsA;) and newB (newB[totalB+1].row = colsB;). These dummy terms serve as sen-
tinels that enable us 10 obtain an elegant algorithm.

Sparse Matrices 81

void mmult (term a[], term b[], term d[l)
{/* multiply two sparse matrices */
int i, j, column, totalB = b[0].value, totald = 0;
int rowsA = a[0).row, colsA = a[0].col,
totalA = a(0].value; int colsB = bl[0].col,
int rowBegin = 1, row = al[l].row, sum = 0;
int newB[MAX_TERMS][3];
if (colsA != b{0].row) {
fprintf (stderr,"Incompatible matrices\n"};
exit (EXIT_FAILURE) ;
}
fastTranspocse (b, newB) ;
/* set boundary condition */
altotalA+l] .row = rowsa;
newB{totalB+1l].row = cclsB;
newB[totalB+1l].col = 0;
for (i = 1; i <= totald;)} {
column = newB[1l].row;
for (j = 1; j <= totalB+l;) |
/* multiply row of a by column of b */

if (al[il.row != row)} {
storeSum(d, &§totalD, row, column, &sum) ;
i = rowBegin;
for (; newB[]J].row == column; j++)

;
column = newB[j].row;
I

else if (newB[j).row != column) {
storeSum(d, &totalD, row, column, &sum};
i = rowBegin;

column = newB[j].row;
}
else switch (COMPARE(a[i].col, newB[j].col)} {
case -1: /* go to next term in a */
i++; break;
case 0: /* add terms, go to next term in a and b*/
sum += { al[i++].value * newB[j++].value);
break;
case 1 : /* advance to next term in b */
J++;

} /* end of for j <= totalB+l */

for (; alil.row == row; i++)

; _—
rowBegin = 1i; row = ali].row;

} /* end of for i<=totald */

d[0].row = rowsh;

d[0].col = colsB; di{Q].value = totalD;

Program 2.10: Sparse matrix multiplication

void storeSum(term d[], int *totalD, int row, int coclumn,
int *sum)

{/* if *sum != 0, then it along with its row and column
positicon is stored as the *totalD+l entry in d */
if {*sum)

if (*totalDd < MAX_TERMS) {
d[++*totalD]}.row = row;
d[*totalD].col = column;
d[*totalD] .value = *sum;
*sum = 0;
}
else {
fprintf (stderr,"Numbers of terms in preduct
exceeds %d\n",MAX TERMS);
exit (EXIT_FAILURE} ;

}

Program 2.11: storeSum function

Analysis of mmult: We leave the correctness proof of mmult as an exercise and consider
only its complexity. Besides the space needed for a, b, d, and a few simple variables, we
also need space Lo store the transpose matrix newB. We also must include the additional
space required by fastTranspose. The exercises explore a strategy for mmudt that does
not explicitly compute newB.

We can see that the lines before the first for loop require only O(colsB + totalB)
time, which is the time needed to transpose b. The outer for loop is executed trofalA
times. At each iteration either i or j or both increase by 1, or i and column are reset. The
maximum total increment in j over the entire loop is totalB + 1. If termsRow is the total

Sparse Matrices 83

number of terms in the current row of A, then i can increase at most fermsRow times
before i moves to the next row of A. When this happens, we reset i to rowBegin, and, at
the same time, advance column to the next column. Thus, this resetting takes place af
most colsB time, and the total maximum increment in § is colsB*termsRow. Therefore,
the maximum number of iterations of the outer for loop is colsB + colsB*termsRow +
fotalB. The time for the inner loop during the multiplication of the current row is
O(colsBxtermsRow + totalB), and the time to advance to the next row is O(termsRow).
Thus, the time for one iteration of the outer for loop is O(colsB*termsRow + totalB). The
overall time for this loop is:

O (¥ (colsB - termsRow + totalB)) = O{(colsB - totalA + rowsA ~toralB) O
row
Once again we can compare this time with the computing time required to multi-
ply matrices using the standard array representation. The classic multiplication algo-
rithm is:

for (1 = 0; 1 < rowshA; i++)
for (j = 0; j < colsB; j++) {
sum = 0;
for (k = 0; k < colsA; k++)

sum += (alil(k] * blk]l[31);
d[ii[]J] = sum;

This algorithm takes O(rowsA - colsA - colsB) time. Since totalA < colsA - rowsA and
totalB < colsA - colsB, the time for mmult is O(rowsA - colsA - colsB). However, its con-
stant factor is greater than that of the classic algorithm. In the worst case, when fotalA =
colsA - rowsA or totalB = colsA - colsB, mmult is slower by a constant factor. However,
when totalA and totalB are sufficiently smaller than their maximum value, that is, A and
B are sparse, mmult outperforms the classic algorithm. The analysis of mmulr is not
trivial. It introduces some new concepts in algorithm analysis and you should make sure
that you understand the analysis.

This representation of sparse matrices permits us to perform operations such as
addition, transpose, and multiplication efficiently. However, there are other considera-
tions that make this representation undesirable in certain applications. Since the number
of terms in a sparse matrix is variable, we would like to represent all our sparse matrices
in one array as we did for polynomials in Section 2.2. This would enable us to make
efficient utilization of space. However, when this is done we run into difficulties in allo-
cating space from the array to any individual matrix. These difficulties also occur with
the polynomial representation and will become even more obvious when we study a
similar representation for multiple stacks and queues in Section 3.4.

EXERCISES

1.

Write C functions readMatrix, printMatrix, and search that read triples into a new
sparse matrix, print out the terms in a sparse matrix, and search for a value in a
sparse matrix. Analyze the computing time of each of these functions.

Rewrite fastTranspose so that it uses only one array rather than the two arrays
required to hold rowTerms and startingPos.

Develop a correctness proof for the mmult function.

Analyze the time and space requirements of fastTranspose. What can you say
about the existence of a faster algorithm? '

Use the concept of an array of starting positions found in fastTranspose to rewrite
mmult so that it multiplies sparse matrices A and B without transposing B. What is
the computing time of your function?

As an alternate sparse matrix representation we keep only the nonzero terms in a
one-dimensional array, value, in the order described in the text. In addition, we
also maintain a two-dimensional array, bits [rows][columns |, such that bits [i 1]
=0if ali}[j]1 =0 and birs{il[j]1 = 1 if ali][j] # 0. Figure 2.7 illustrates the
representation for the sparse matrix of Figure 2.5(b).

[15]
22
-15
11
3
~6
91

| 28

O~ OO QO —
SCOoOOoCOo—O
—_—0OOoO~=O
SO O e O
oooCooo
QOO0

Figure 2.7: Alternate representation of a sparse matrix

(a) On a computer with w bits per word, how much storage is needed to
represent a sparse matrix, A, with ¢ nonzero terms?

- {(b) Write a C function to add two sparse matrices A and B represented as in Fig-

ure 2.7 1o obtain D = A + B. How much time does your algorithm take?

(c) Discuss the merits of this representation versus the one used in the text.

Consider the space and time requirements for such operations as random
access, add, multiply, and transpose. Note that we can improve the random
access time by keeping another array, ra, such that rafi] = number of
nonzero terms in rows O through i — 1.

Representation of Multidimensional Arrays 85

2.6 REPRESENTATION OF MULTIDIMENSIONAL ARRAYS

In C, multidimensional arrays are represented using the array-of-arrays representation
{Section 2.2.2). An alternative to the array-of-arrays representation is to map all ele-
ments of a multidimensional array into an ordered or linear list. The linear list is then
stored in consecutuve memory just as we store a one-dimensional array. This mapping
of a multidimensional array to memory requires a more complex addressing formula that
required by the mapping of a one-dimensional array to memory. If an array is declared

a [upperyliupper] - - - [upper,_,], then it is easy to see that the number of elements in
the array is:

n-1

ITupper: -

i=0

where IT is the product of the upper;’s. For instance, if we declare a as a [10][101[10],
then we require 10 - 10 - 10 = 1000 units of storage to hold the array. There are two com-
mon ways to represent multidimensional arrays: row major order and column major
order. We consider only row major order here, leaving column major order for the exer-
cises.

As its name implies, row major order stores multidimensional arrays by rows. For
instance, we interpret the two-dimensional array A {upperllupper,] as uppery rows,
FOWg, FOW |, " , TOWypper 1, €ach row containing upper | elements.

If we assume that o is the address of A [0][0], then the address of A[i]{0] is & +
i - upper, because there are i rows, each of size upper,, preceding the first element in
the ith row. Notice that we haven’t multiplied by the element size. This follows C con-
vention in which the size of the elements is automatically accounted for. The address of
an arbitrary element, ¢ [{ 1[f], is @ + i - upper, + j.

To represent a three-dimensional array, A[uppergllupper,]lupper,], we interpret
the array as upper, two-dimensional arrays of dimension upper X upper,. To locate
alij[jlik], we first obtain o + i - upper | - upper 2 as the address of a[i][0][0] because
there are i two-dimensional arrays of size upper | - upper, preceding this element. Com-
bining this formula with the formula for addressing a two-dimensional array, we obtain:

O +i-upper) - uppery + j - uppers + k
as the address of a [i][][k 1.

Generalizing on the preceding discussion, we can obtain the addressing formula
for any element A (ip]li1]. . . [i,—1] in an n-dimensional array declared as:

A [upperollupper,]. . . [uppers_i]

If ¢ is the address for A[0]{0] . .. [0] then the address of a [ip][0][0] . . . [0] is:

O+ ig upper, upper, . .. upper n—1

The address of a [iy3{i,1(0]. .. [0 is:

O+iy upper| upper; ... upper,_| + [| upper, uppers ... upper,

Repeating in this way the address for A {iglliy]. .. [i,—(]is:

O + igupper yupper, . . . upper, _|
+ i uppersuppers . .. upper,_;
+ iuppersupper, . .. upper,_;

+ Ip_pupper,_
+ iy

n—1
a;j= [uppery 0<j<n-1
k=j+

n—1
= o+ -EE) i;a; where: Gy =1
j=

Notice that a; may be computed from a;..;, 0 < j < n -1, using only one multiplication as
a; = upper;,; " d;,;. Thus, a compiler will initially take the declared bounds
uppery , ..., upper,_; and use them to compute the constants ag...d,_; using n—2
multiplications. The address of aliy]...a[i,_;] can be computed using the formula,
requiring n—! more multiplications and n additions and » subtractions.

EXERCISES

1.

Assume that we have a one-dimensional array, a[MAX_SIZE]. Normalily, the sub-
scripts for this array vary from 0 to MAX_SIZE —~ 1. However, by using pointer
arithmetic we can create arrays with arbitrary bounds. Indicate how to create an
array, and obtain subscripts for an array, that has bounds between ~10 to 10. That
is, we view the subscripts as having the values —10,-9,-8, --- , 8,9, 10.

Extend the results from Exercise 1 to create a two-dimensional array where row
and column subscripts each range from —10 to 10.

Obtain an addressing formula for the element al[iglli;]... [i,_,] in an array
declared as a [uppery] . .. alupper,_,]. Assume a column major representation of
the array with one word per element and o the address of a[0][0]...[0]. In
column major order, the entries are stored by columns first. For example, the array
a|3][3} would be stored as a[0][0), a[1][0}, a[2][0], a[O}{1], a[11{1], a[2][1},
a [0112], a [1]§2]), a [2][2].

Strings 87

2.7 STRINGS

2.7.1 The Abstract Data Type

Thus far, we have considered only ADTs whose component elements were numeric. For
example, we created a sparse matrix ADT and represented it as an array of triples
<row, col, value >. In this section, we turn our attention to a data type, the string, whose
component elements are characters. As an ADT, we define a string to have the form, § =
50, ..., 8,1, where s; are characters taken from the character set of the programming
language. If n =0, then S is an empty or null string.

There are several useful operations we could specify for strings. Some of these
operations are similar to those required for other ADTs: creating a new empty string,
reading a string or printing it out, appending two strings together (called concatenation),
or copying a string. However, there are other operations that are unique to our new
ADT, including comparing strings, inserting a substring into a string, removing a sub-
string from a string, or finding a pattern in a string. We have listed the essential opera-
tions in ADT 2.4, which contains our specification of the string ADT. Actually there are
many more operations on strings, as we shall see when we look at part of C’s string
library in Figure 2.8.

2.7.2 StringsinC

In C, we represent strings as character arrays terminated with the null character 0. For
instance, suppose we had the strings:

#define MAX_SIZE 100 /*maximum size of string */
char s[MAX_SIZE] {"dog"};
char t[MAX_SIZE] {"house"};

Figure 2.9 shows how these strings would be represented internally in memory.
Notice that we have included array bounds for the two strings. Technically, we could
have declared the arrays with the statements:

char s[] = {"dog"}:
char t[] = {"house"}

Using these declarations, the C compiler would have allocated just enough space to hold
each word including the null character. Now suppose we want to concatenate these
strings together to produce the new string, "doghouse." To do this we use the C function
streat (See Figure 2.8). Two strings are joined together by strecar (s, t), which stores the
result in s. Although s has increased in length by five, we have no additional space in s
to store the extra five characters. Our compiler handled this problem inelegantly: it

ADT String 1s
objects: a finite set of zero or more characters,
functions:
for all 5.t € String, i, j, m € non-negative integers

String Null(m) = return a string whose maximum length is
m characters, but is initially set to NULL
We write NULL as "".
if s equals ¢ return 0
else if s precedes ¢ return -1

else return +1
if (Compare(s, NULL)} return FALSE
else return TRUE
if (Compare(s, NULL))
return the number of characters in s
else return 0.
if (Compare(t, NULLY))
return a string whose elements are those
of s followed by those of ¢
else return s,
if ((f > 0) && (i +j-1) < Length(s))
return the string containing the characters
of s at positions i, i+ I, -+ | i+j—1.
else return NULL.

Integer Compare(s, 1)

Boolean IsNull(s)

Integer Length(s)

String Concat(s, 1)

String Substr(s, i, j)

ADT 2.4: Abstract data type Srring

simply overwrote the memory to fit in the extra five characters. Since we declared ¢
immediately after s, this meant that part of the word "house” disappeared.

We have already seen that C provides a built-in function to perform concatenation.
In addition to this function, C provides several other string functions which we access
through the statement #include <string.h>. Figure 2.8 contains a brief summary of these
functions (we have excluded string conversion functions such as atei). For each func-
tion, we have provided a generic function declaration and a brief description. Rather
than discussing each function separately, we next look at an example that uses several of
them.

Example 2.2 [String insertion]|: Assume that we have two strings, say string 1 and
string 2, and that we want to insert string 2 into string | starting at the ith position of
string 1. We begin with the declarations:

Strings 89

Function

Description

char *streat(char *dest, char *src)

concatenate dest and sre strings;
return result in dest

char Fstrncat(char *dest, char *src, int n)

char *stremp(char *strl, char *s1r2) -

concatenate dest and # characters
from src; return result in dest

compate two strings;
return < O if strf < ser2;
Qif strl = str2;

> Qif strl > str2

char *strncmp(char *strl, char *str2, int n)

compare first # characters
return < Q if stri < str2;
Oif strl = str2;

> 1if strl > str2

char *strepy(char *dest, char *src)

copy src into dest, return dest

char *strancpy(char *dest, char *src, int n}

copy n characters from src
string into dest; return dest;

size—_t strien(char *s)

return the length of a s

char *strchr(char *s, int ¢)

return pointer to the first
occurrence of ¢ in s;
return NULL if not present

char *strrchr(char *s, int ¢}

return pointer to last occurrence of
cin s; return NULL if not present

char *striok(char *s, char *delimiters)

return a token from s; token is
surrounded by delimiters

char *strstr(char *s, char *pat)

return pointer to start of
patins

size _t strspn(char *s, char *spanset)

scan s for characters in spanset;
return length of span

size 1 strespn{char *s, char *spanset)

scan 5 for characters not in spanset;
return length of span

char *strpbrk{char *s, char *spanset)

scan s for characters in spanset;
return pointer to first occurrence
of a character from spanset

Figure 2.8: C string functions

s[01s[1]s{2}s(3] {0 [1]2[2]) 2 [3]2[4]2(5]

d|lo|g|\0 h|o|u|sle|\D

Figure 2.9: String representation in C

#include <string.h>

#define MAX..SIZE 100 /*size of largest string*/
char stringl {MAX_SIZE], *s = stringl;

char string2[MAX_SIZE], *t = string2;

In addition to creating the two strings, we also have created a pointer for each string.

Now suppose that the first string contains "amobile” and the second contains "uto”
(Figure 2.10). We want to insert "uto” starting at position 1 of the first string, thereby pro-
ducing the word "automobile.” We can accomplish this using only three function calls,
as Figure 2.10 illustrates. Thus, in Figure 2.10(a), we assume that we have an empty
string that is pointed to by temp. We use strrcpy to copy the first ¢ characters from s into
temp. Since i = 1, this produces the string "a.” In Figure 2.10(b), we concatenate temp
and ¢ to produce the string "auto.” Finally, we append the remainder of s to ftemp. Since
strncat copied the first i characters, the remainder of the string is at address (s + i). The
final result is shown in Figure 2.10(c).

Program 2.12 inserts one string into another. This particular function is not nor-
mally found in <string.h>. Since either of the strings could be empty, we also include
statements that check for these conditions. It is worth pointing out that the call
strains (s, t, 0) is equivalent to streat (¢, s). Program 2.12 is presented as an example of
manipulating strings. It should never be used in practice as it is wasteful in its use of
time and space. Try to revise it so the string femp is not required. U

2.7.3 Pattern Matching

Now let us develop an algorithm for a more sophisticated application of strings. Assume
that we have two strings, string and pat, where pat is a pattern to be searched for in
string. The easiest way to determine if pat is in string is to use the built-in function strstr.
If we have the following declarations:

char pat [MAX_SIZE], string{MAX_SIZE], *t;

then we use the following statements to determine if pat is in string:

Strings 91

\0

\0

temp —=\0

 initially

temp —= a | \0

(a) after stimcpy (temp,s,i)

temp —=4 a] U

t

0

\0

(b) after strcat (temp,t

temp —= a|u|tio|m i eg\O
(c) after strcat (temp, (5 +i))
Figure 2.10: String insertion example
if (t = strstr{string,pat))
printf("The string from strstr is: %s\n",t);

else

printf ("The pattern was not found with strstrin");

The call {t = strstr(string,pat)) returns a null pointer if pat is not in string. If pat is in
string, ¢ holds a pointer to the start of pat in string. The entire string beginning at posi-

tion ¢ is printed out.

Although strstr seems ideally suited to pattern matching, we may want to develop
our own patternt matching function because there are severat different methods for imple-
menting a pattern matching function. The easiest but least efficient method sequentially
examines each character of the string until it finds the pattern or it reaches the end of the
string. (We explore this approach in the Exercises.) If pat is not in string, this method
has a computing time of O(n - m) where n is the length of par and m is the length of
string. We can do much better than this, if we create our own pattern matching fuaction.

Wa ran immrave an an avhanctive nattern matchine techniane by anittine when

void strnins{char *s, char *t, int i)
{/* insert string t into string s at position i */
char string[MAX-SIZE], *temp = string;

if (i <« 0 && 1 > strlen(s)) {
fprintf (stderr,"Position is out of bounds \n"};
exit (EXIT_FAILURE) ;

}

if {!strlen(s))
strepyl(s,t);

else if (strlen{t)) {
strncpy{temp, s,1i};
strcat{temp, t);
strcat{temp, (s+i});
strepy (s, temp);

1

Program 2.12: String insertion function

strien (pat) is greater than the number of remaining characters in the string. Checking
the first and last characters of par and string before we check the remaining characters is
a second improvement. These changes are incorporated in nfind (Program 2.13).

Example 2.3 [Simulation of nfind]: Suppose pat = "aab" and string = "ababbaabaa."
Figure 2.11 shows how nfind compares the characters from pat with those of string. The
end of the string and pat arrays are held by lasts and lastp, respectively. -First nfind com-
pares string [endmaich] and pat[lastp]. If they match, nfind uses i and j to move
through the two strings until a mismatch occurs or until all of pat has been matched. The
variable start is used to reset i if a mismatch occurs. 0

Analysis of afind: If we apply nfind to string = "aa --- a" and paz="a - - - ab", then the
computing time for these strings is linear in the length of the string O(m), which is cer-
tainly far better than the sequential method. Although the improvements we made over
the sequential method speed up processing on the average, the worst case computing
time 1s still O(n - m). O

Ideally, we would like an algorithm that works in O(strlen (string) + strien{pat))
time. This is optimal for this problem as in the worst case it is necessary to look at all
characters in the pattern and string at least once. We want to search the string for the
pattern without moving backwards in the string. That is, if a mismatch occurs we want

Strings 93

int nfind{char *string, char *pat)
{/* match the last character of pattern first, and
then match from the beginning */
int i, j,start = 0;
int lasts = strlen{string)-1;
int lastp = strlen(pat)-1;
int endmatch = lastp;

for (i = 0; endmatch <= lasts; endmatch++, start++) |

if (stringl[endmatch] == pat[lastp])
for (i = 0, 1 = start; J < lastp &&
string[i] == pat[jl; i++,3++)
if (j == lastp)

return start; /* successful */

}

return —-1;

1

Program 2.13: Pattern matching by checking end indices first

to use our knowledge of the characters in the pattern and the position in the pattern
where the mismatch occurred to determine where we should continue the search. Knuth,
Morris, and Pratt have developed a pattern matching algorithm that works in this way
and has linear complexity. Using their example, suppose

pat=‘abcabcacal’

Let s =598 ' Sy_ be the string and assume that we are currently determining
whether or not there is a match beginning at s;. If s;#a then, clearly, we may proceed by
comparing s;,; and a. Similarly if 5; = a and s5;,, # b then we may proceed by compar-
ing s;,; and a. If 5;5,,1 = ab and 5;,, # c then we have the situation:

s= a b 2 7?7 7Y 7T
pat = ‘a b ¢ a b ¢ a ¢ a ¥V

The ? implies that we do not know what the character in s is. The first ? in s represents
Si42 and s;,2 #¢. At this point we know that we may continue the search for a match by
comparing the first character in pat with s;,,. There is no need to compare this ¢haracter

a2l a]|b] |
T T
J lastp
(a) pattern i
i
L2 bfafblblafalblalai |
T T T
start endmatch lasts
(b) no match
ajblalb]bTajalb[alal
T T T
start endmatch lasts
(c) no match
Lafbfafv|bTafalblalal]
- T T T
start endmatch lasts
{d} no match
(2l bv[a[bJbo[afalb]alal] |
T T T
start endmatch lasts
{e) no match
lalbfaf[b[bTalalb]a a |
T T
start endmatch lasts
(f} no match
[a]bvJafbibfalalbialal |
T T T
start endmatch lasts
(g) match

Figure 2.11: Simulation of nfind

Strings 95

of pat with s;,, as we already know that s;,, is the same as the second character of pat,
b, and so s;,; #a. Let us try this again assuming a match of the first four characters in
pat followed by a nonmatch, i.e., s;,4 # b. We now have the situation:

s= -~ a b ¢ a Y T . . .7
pat = ‘a b ¢ a b ¢ a ¢ a ¥

We observe that the search for a match can proceed by comparing s;,4 and the second
character in pat, b. This is the first place a partial match can occur by sliding the pattern
pat towards the right. Thus, by knowing the characters in the patterm and the position in’
the pattern where a mismatch occurs with a character in s we can determine where in the
pattern to continue the search for a match without moving backwards in 5. To formalize
this, we define a failure function for a pattern,

Definition: If p = pop; ' - p,_; 1s a pattern, then its failure function, f, is defined as:

FG) = largest i < jsuchthatpop, -~ p; =p;_p;_isv2 " P;if such an i 2 0 exists O
B | otherwise

For the example pattern, pat = abcabcacab, we have:

j 0 1 2 3 4 5 6 7 8 9
pat a b c a a
f -1t -1 -1 0 1 2 3 -1 0 1

From the definition of the failure function, we arrive at the following rule for pat-
tern matching: If a partial match is found such that s;_; -+ 5;_1=pop, R pj and
s; % p; then matching may be resumed by comparing s; and py;_y fj£0. If j =0,
then we may continue by comparing s;, | and pg. This patiern matching rule translates
into function pmatch (Program 2.14). The following declarations are assumed:

#include <stdio.h>

#include <string.h>

#define max_string size 100
#define max_pattern_size 100
int pmatch();

vold fail({);

int failure[max_pattern_sizel;
char string[max_string_size];
char pat([max_pattern_size];

int pmatch{char *string, char *pat)
{/* Knuth, Morris, Pratt string matching algorithm */
int 1 =0, 3 = 0;
int lens = strlen(string);
int lenp = strlen(pat);
while (i < lens && J < lenp } {
if (string{i] == pat[jl} {
i+ Ja+i)
else if {(j == 0) i++;
else j = failurel[j-11+1;

!

}
return { (j == lenp) ? (i-lenp} : -1};
}

Program 2.14: Knuth, Morris, Pratt pattern matching algorithm

Note that we do not keep a pointer to the start of the pattern in the string. Instead
we use the statement:

return ((j == lenp) ? (i — lenp) : -1);

This statement checks to see whether or not we found the pattern. If we didn’t find the
pattern, the pattern index index j is not equal to the length of the pattern and we return
—1. If we found the pattern, then the starting position is i — the length of the pattern.

Analysis of pmatch: The while loop is iterated until the end of either the string or the
pattern is reached. Since i 1s never decreased, the lines that increase i cannot be exe-
cuted more than m = strien (string) times. The resetting of j to failure[j—1]+1 decreases
the value of j. So, this cannot be done more times than j is incremented by the statement
j++ as otherwise, j falls off the pattern. Each time the statement j ++ is executed, i is
also incremented. So, j cannot be incremented more than m times. Consequently, no
statement of Program 2.14 is executed more than m times. Hence the complexity of
function pmatch is O(m) = O(strlen (string)). O

From the analysis of pmatch, it follows that if we can compute the failure function
in O(strien (par)) time, then the entire pattern matching process will have a computing
time proportional to the sum of the lengths of the string and pattern. Fortunately, there is
a fast way to compute the failure function. This is based upon the following restatement
of the failure function:

Strings 97

-1 ifj=0
fU) = {f"(— 1} + 1 where m is the least integer k for which pp;_1y.1 = p;
-1 if there is no k satisfying the above

(note that £1(j) = £ () and f7G) = £ (F*7' ().

This definition yields the function in Program 2.15 for computing the failure function of
a pattern.

void fail{char *pat)
{/* compute the pattern’s failure function */
int n = strlen(pat};
failure[0] = -1;
for (j=1; j < n; Jj++) {
i = failure[j—11;
while {(pat[j] '= patl[i+l}) && (i >= 0)}
i = failure([i];
if (pat[j] == pat[i+l])
failure[j] = i+1;
else failure[j] = -1;

}

Program 2.15: Computing the failure function

Analysis of fail: In each iteration of the while loop the value of i decreases (by the
definition of f). The variable i is reset at the beginning of each iteration of the for loop.
However, it is either reset to —1 (initially or when the previous iteration of the for loop
goes through the last else clause) or it is reset to a value 1 greater than its terminal value
on the previous iteration (i.c., when the statement failure[f] = i +1 is executed). Since
the for loop is iterated only n—1 (n is the length of the pattern) times, the value of j has a
total increment of at most z—1. Hence it cannot be decremented more than #—1 times.
Consequently the while loop is iterated at most »—1 times over the whole algorithm and
the computing time of fail is O(n) = O{strlen (pat)). O

Note that when the failure function is not known in advance, the time to first compute
this function and then perform a pettern match is O(strlen (par) + strien (string)).

EXERCISES

1.

10.

2.8

Write a function that accepts as input a string and determines the frequency of
occurrence of each of the distinct characters in string. Test your function using
suitable data.

Write a funclion, strndel, that accepts a string and two integers, start and length.
Return a new string that is equivalent to the original string, except that length
characters beginning at szart have been removed.

Write a function, strdel, that accepts a string and a character. The function returns
string with the first occurrence of character removed.

Write a function, strpos 1, that accepts a string and a character. The function
returns an integer that represents the position of the first occurrence of character
in string. 1f character is not in string, it returns —1. You may not use the function
strpos which is part of the traditional <string.h> library, but not the ANSI C one.
Write a function, strchar 1, that does the same thing as strpos | except that it returns
a pointer to character. If character is not in the list it returns NULL. You may not
use the built-in function strchr,

Modify Program 2.12 so that it does not use a temporary string temp. Compare the
complexity of your new function with that of the old one.

Write a function, strsearch, that uses the sequential method for pattern matching.
That is, assuming we have a string and a pattern, strsearch examines each charac-
ter in string until it either finds the pattern or it reaches the end of the string.

Show that the computing time for nfind is O(n - m) where n and m are, respec-
tively, the lengths of the string and the pattern. Find a string and a pattern for
which this is true.

Compute the failure function for each of the following patterns:

(@) aaaab

(by ababaa

{(c) abaabaab

Show the equivalence of the two definitions for the failure function.

REFERENCES AND SELECTED READINGS

The Knuth, Morris, Pratt pattern-matching algorithm can be found in ‘‘Fast pattern
maiching in strings,”” SIAM Journal on Computing, 6:2, 1977, pp. 323-350. A discussion
of the Knuth Morris Pratt algorithm, along with other string matching algorithms, may be
found in Introduction to Algorithms Second Edition, by T. Cormen, C, Leiserson, R.
Rivest and C. Stein, McGraw Hill, New York, 2002.

2.9

Additional Exercises 99

ADDITIONAL EXERCISES

Given an array a[n] produce the array z[n] such that z[0] = a[n-1],z[1] =
aln-2), - ,z[n-2]=alll], z[n-1] = a[0]. Use a minimal amount of storage.

An m X n matrix is said to have a saddle point if some entry a[i][/] is the smallest
value in row i and the largest value in column j. Write a C function that deter-
mines the location of a saddle point if one exists. What is the computing time of
your method?

Exercises 3 through 8 explore the representation of various types of matrices that
are frequently used in the solution of problems in the natural sciences.

3.

A triangular matrix is one in which either all the elements above the main diago-
nal or all the elements below the main diagonal of a square matrix are zero. Figure
2.12 shows a lower and an upper triangular matrix. In a lower triangular matrix,
a, with n rows, the maximum number of nonzero terms in row i is i +1. Thus, the
total number of nonzero terms is

n-1
d= Y (i+D)=n(n+1)2.
i=0

Since storing a triangular matrix as a two dimensional array wastes space, we
would like to find a way to store only the nonzero terms in the triangular matrix.
Find an addressing formula for the elements a;; so that they can be stored by rows
in an array b [n(n +1)/2—-1], with a [0][0] being stored in & [0].

[x X X X X X X X X X X]
X X X X
XX X X
X X X non X
X X zero X zero X
X non X X X
X zero X Zero X X
X X X X
X X X X
X X X X X X X X X X X
lower triangular upper triangular

Figure 2.12: Lower and upper triangular matrices

Let a and b be two lower triangular matrices, each with n rows. The total number
of elements in the lower triangles is n(n +1). Devise a scheme to represent both
triangles in an array 4 [n—1][n]. [Hint: Represent the triangle of a in the lower tri-
angle of d and the transpose b in the upper triangle of d4.] Write algorithms to
determine the values of a[i][], p[i][/].0<i, j<n.

A tridiagonal matrix is a square matrix in which all elements that are not on the
major diagonal and the two diagonals adjacent to it are zero (Figure 2.13). The
elements in the band formed by these three diagonals are represented by rows in
an array, b, with a[0][0] being stored in b [0]. Obtain an algorithm to determine
the value of a[i][/], 0 <i, j < n from the array b.

X X
X X X
X X X
X
Zero
Zero LX X
X X X
X X X
X X X

Figure 2.13: Tridiagonal matrix

6.

bl(]
9

A square band matrix D, , is an n X n matrix in which all the nonzero terms lie in
a band centered around the main diagonal. The band includes the main diagonal
and ¢ —1 diagonals below and above the main diagonal (Figure 2.14).

(a) How many elements are there in the band D, ,?
(b) What is the relationship between i and j for elements d; ; in the band D, ,7

(c) Assume that the band of D, , is stored sequentially in an array b by diago-
nals, starting with the lowermost diagonal. For example, the band matrix,
D, 5 of Figure 2.14 would have the following representation.

b{1] b[2] b[3] b4} b[5] b6l b(7] b[B] bMO] bI0] b[LI] bII2] b{i13]
7 8 3 6 6 0 2 8 7 4 9 8 4

Additional Exercises 101

a diagonals

upper band

N\ :

lower \

band T n

Ty rows
0

r columns
main diagonal

D!’Lﬂ

Figure 2.14: Square band matrix

dy

dyy dip dy dyp dyg dy dp dy dy din dyn dyy dp

Obtain an addressing formuta for the location of an element, d, ;, in the lower band
of D, , (location(d 1p) = 2 in the example above).

A generalized band matrix D, , , is an n X n matrix in which all the nonzero terms
lie in a band made up of a -1 diagonals below the main diagonal, the main diago-
nal, and -1 bands above the main diagonal (Figure 2.15).

{2) How many elements are there in the band of DD, , 7

(b) What is the relationship between i and j for the elements d;; in the band of
Dn.a,b?

{c) Obtain a sequential representation of the band D, , , in the one dimensional
array e. For this representation, write a C function value (n, a, b, i, j, €)
that determines the value of element d; in the matrix D, ,. The band of
D, .. is represented in the array e.

A complex-valued matrix X is represented by a pair of matnices <a, b >, where a
and b contain real values. Write a function that computes the product of two
complex-valued matrices <a, b > and <d, ¢ >, where <4, b> % <d, e > =(a + ib)

-

rows

n columns \

main diagonal

Dn,a,b

Figure 2.15; Generalized band matrix

* (d + ie) = (ad — be) + i (ae + bd). Determine the number of additions and mul-
tiplications if the matrices are all # X n.

9. § [Programming project| There are a number of problems, known collectively as
"random walk" problems, that have been of longstanding interest to the mathemati-
cal community. All but the most simple of these are extremely difficult to solve,
and, for the most part, they remain largely unsolved. One such problem may be
stated as:

A (drunken) cockroach is piaced on a given square in the middle of a tile floor in a
rectangular room of size n X m tiles. The bug wanders (possibly in search of an
aspirin) randomly from tile to tile throughout the room. Assuming that he may
move from his present tile to any of the eight tiles surrounding him (unless he is
against a wall) with equal probability, how long will it take him to touch every tile
on the floor at least once?

Hard as this problem may be to solve by pure probability techmiques, it is quite

Additional Exercises 103

easy to solve using a computer, The technique for doing so is called "simulation.”
This technique is widely used in industry to predict traffic flow, inventory control,
and so forth, The problem may be simulated using the following method:

An n X m array count is used to represent the number of times our cockroach has
reached each tile on the floor. All the cells of this array are initialized to zero.
The position of the bug on the fioor is represented by the coordinates (ibug, jbug).
The eight possible moves of the bug are represented by the tiles located at
(ibug + imove [k], jbug + jmove [k]), where 0<k <7, and

imovel0] = -1 jmove[0] = 1
imove[l]= 0 jmove[lj= 1
imove[2]= 1 jmove[2] = 1

imovel3]= 1 jmove[3]= 0
imovel4]= 1 jmove[d4] = -1
imove[5]= 0 jmove[5]=-1
imove[6]=-1 jmove[6] = -1
imove[T]=-1 jmove[T]= O

A random walk to any one of the eight neighbor squares is simulated by generat-
ing a random value for &, lying between 0 and 7. Of course, the bug cannot move
outside the room, so that coordinates that lead up a wall must be ignored, and a
new random combination formed. Each time a square is entered, the count for that
square is incremented so that a nonzero entry shows the number of times the bug
has landed on that square. When every square has been entered at least once, the
experiment is complete.

Write a program to perform the specified simulation experiment. Your program
MUST:

(a) handle all values of n and m, 2 < n< 40, 2<m £ 20;

(b) perform the experiment for (1) n = 15, m = 15, starting point (10, 10), and
{(2) n =39, m= 19, starting point (i, 1);

(¢) have an iteration limit, that is, a maximum number of squares that the bug
may enter during the experiment. This ensures that your program will ter-
minate. A maximum of 50,000 is appropriate for this exercise.

For each experiment, print (1) the total number of legal moves that the cockroach

makes and (2) the final count array. This will show the "density” of the walk, that

is, the number of times each tile on the floor was touched during the experiment.

This exercise was contributed by Olson.

10. § [Programming project] Chess provides the setting for many fascinating diver-
sions that are quite independent of the game itself. Many of these are based on the
strange "L-shaped" move of the knight. A classic example is the problem of the
"knight’s tour," which has captured the attention of mathematicians and puzzle
enthusiasts since the beginning of the eighteenth century. Briefly stated, the prob-
lem requires us to move the knight, beginning from any given square on the chess-
board, successively to all 64 squares, touching each square once and only once.
Usually we represent a solution by placing the numbers 0, 1, ---, 63 in the
squares of the chess board to indicate the order in which the squares are reached.
One of the more ingenious methods for solving the problem of the knight’s tour
was given by J. C. Warnsdorff in 1823. His rule stated that the knight must always
move to one of the squares from which there are the fewest exits to squares not
already traversed.

The goal of this programming project is to implement Wamsdorff's ruie. The
ensuing discussion will be easier to follow, however, if you try to construct a solu-
tion to the problem by hand, before reading any further.

The crucial decision in solving this problem concemns the data representation. Fig-
ure 2.16 shows the chess board represented as a two-dimensional array.

The eight possible moves of a knight on square (4, 2) are also shown in this figure.
In general, a knight may move to one of the squares (i —2, j + 1), i — 1, j + 2),
G+1L,j+2),0+2,j+D,0G+2,j-1D ¢+ L,j-2)G-1,j-2),(-2,j-1).
However, notice that if (i, j) is located near one of the board’s edges, some of
these possibilities could move the knight off the board, and, of course, this is not
permitted. We can represent easily the eight possible knight moves by two arrays
ktmove 1 and ktmove 2 as:

Additional Exercises 105

Figure 2.16: Legal moves for a knight

ktmovel ktmove?2

-2 1
-1 2
1 2
2 1
2 -1
1 -2
-1 -2
-2 -1

Then a knight at (i, j) may move to (i + ktmove [k], j + ktmove 2[k]), where k is
some value between () and 7, provided that the new square lies on the chess board.
Below is a description of an algorithm for solving the knight’s tour problem using
Warnsdorff's rule. The data representation discussed in the previous section is
assumed.

(a) [Initialize chessboard] For 0 <i, j <7 set board [i 1[j] to 0.

{b)
(c)
()

(e)

¢

(2)

()

[Set starting position] Read and print (i, j) and then set board [][] to 0.
[Loop} For 1 < m < 63, do steps (d) through (g).

[Form a set of possible next squares] Test each of the, eight squares one
knight’s move away from (i, j) and form a list of the possibilities for the
next square (nexti{l], nextj{l]). Let npos be the number of possibilities.
(That is, after performing this step we have nexti [{] = i + ktmove 1{k] and
nextj[11=j + ktmove 2[k 1, for certain values of k between 0 and 7. Some of
the squares (i + kimove 1[k], j + ktmove 2[k]) may be impossible because
they lie off the chessboard or because they have been occupied previously
by the knight, that is, they contain a nonzero number. In every case we will
have 0 < npos £ 8.)

[Test special cases] If npos = 0, the knight’s tour has come to a premature
end; report failure and go to step (h). If npos = 1, there is only one next
move; set min {0 1 and go to step (g).

[Find next square with minimum number of exits] For 1 <] <npos, set
exits [I] to the number of exits from square (nexti [1], nextj[l]). That is, for
each of the wvalues of [, examine each of the next squares
(nexti [1] + ktmove 1[k], nextj [I] + krmove 2[k]) to see if it is an exit from
(nexti [1], nextj [I1), and count the number of such exits in exits [{]. (Recall
that a square is an exit if it lies on the chessboard and has not been occupied
previously by the knight.) Finaily, set min to the location of the minimum
value of exits. (If there is more than one occurrence of the minimum value,
let min denote the first such occurrence. Although this does not guarantee a
solution, the chances of completing the tour are very good.)

[Move knight| Set i = nexti [min |, j = nextj[min], and board[il[j] = m.
Thus, (i, j) denotes the new position of the knight, and board [i][j] records
the move in proper sequence.
[Print] Print out the board showing the solution to the knight’s tour, and
then terminate the algorithm,

Write a C program that corresponds to the algorithm. This exercise was contri-
buted by Legenhausen and Rebman.

i
B
L

CHAPTER 3

STACKS AND QUEUES

3.1 STACKS

In this chapter we look at two data types that are frequentiy found in computer science.
These data types, the stack and the queue, are special cases of the more general data
type, ordered list, that we discussed in Chapter 2. Recall that A =ag,a;, '~ ,a,_ isan
ordered list of # > 0 elements. We refer to the g; as atoms or elements that are taken
from some set. The null or empty list, denoted by (), has n = 0 elements. In this section
we begin by defining the ADT Stack and follow with its implementation. Then, we look
at the queue.

A stack is an ordered list in which insertions (also called pushes and adds) and
deletions (also called pops and removes) are made at one end called the fop. Given a
stack S = (ag, - -+ , a,_;), we say that a, is the bottom element, a,,_, is the top element,
and a; is on top of element @;_, , 0 < i < n. The réstrictions on the stack imply that if we
add the elements A, B, C, D, E to the stack, in that order, then E is the first element we
delete from the stack. Figure 3.1 illustrates this sequence of operations. Since the last
element inserted into a stack is the first element removed, a stack is also known as a
Last-In-First-Out (LIFQ) list.

E top
D top | D D top
Cpr-top |C C C
B top B B B B
A top A A A A A
push push push push pop

Figure 3.1: Inserting and deleting elements in a stack

Example 3.1 [System stack]: Before we discuss the stack ADT, we look at a special
stack, called the system stack, that is used by a program at run-time to process function
calls. Whenever a function is invoked, the program creates a structure, referred to as an
activation record or a stack frame, and places it on top of the system stack. Initially, the
activation record for the invoked function contains only a pointer to the previous stack
frame and a return address. The previous stack frame pointer points to the stack frame of
the invoking function, while the return address contains the location of the statement to
be executed after the function terminates. Since only one function executes at any given
time, the function whose stack frame is on top of the system stack is chosen. If this func-
tion invokes another function, the local variables, except those declared static, and the
parameters of the invoking function are added to its stack frame. A new stack frame is
then created for the invoked function and placed on top of the system stack. When this
function terminates, its stack frame is removed and the processing of the invoking func-
tion, which is again on top of the stack, continues. A simple example illustrates this pro-
CECSS.

Assume that we have a main function that invokes function al. Figure 3.2(a)
shows the system stack before al is invoked; Figure 3.2(b) shows the system stack after
al has been invoked. Frame pointer fp is a pointer to the current stack frame. The sys-
tem also maintains separately a stack pointer, sp, which we have not illustrated.

Since all functions are stored similarly in the system stack, it makes no difference
if the invoking function calls itself. That is, a recursive call requires no special strategy;
the run-time program simply creates a new stack frame for each recursive call. How-
ever, recursion can consume a significant portion of the memory allocated to the system
stack; it could consume the entire available memory. O

Ouwr discussion of the system stack suggests several operations that we include in
the ADT specification (ADT 3.1).
The easiest way to implement this ADT is by using a one-dimensional array, say,

Stacks 109

—1 previous frame pointer |=—fp

return address al

local variables

previous frame pointer |<--fp previous frame pointer
return address main l Lo return address main -
(a) (b)

Figure 3.2: System stack after function call

stack [MAX_STACK_SIZE],I where MAX_STACK_SIZE is the maximum number of
entries. The first, or bottom, element of the stack is stored in stack [Q], the second in
stack [1], and the ith in stackli—1]. Associated with the array is a variable, top, which
points to the top element in the stack. Initially, rop is set to —1 to denote an empty stack.
Given this representation, we can implement the operations in ADT 3.1 as follows.
Notice that we have specified that element is a structure that consists of only a key field.
Ordinarily, we would not create a structure with a single field. However, we use element
in this and subsequent chapters as a template whose fields we may add to or modify to
meet the requirements of our application.
Stack CreateS(maxStackSize) 1=
#define MAX_STACK-SIZE 100 /* maximum stack size */
typedef struct {
int key;
/* other fields */
} element;
element stack [MAX.STACK_SIZE];
int top = -1;

Boolean IsEmpty(Stack) == top < 0;

Boolean IsFull(Stack) ::= top »>= MAX_STACK_SIZE-1;

ADT Stack is
objects: a finite ordered list with zero or more elements.
functions:
for all stack € Stack, item € element, maxStackSize € positive integer
Stack CreateS(maxStackSize) ::=
create an empty stack whose maximum size is maxStackSize
Boolean TsFull{stack, maxStackSize} ::=
if (number of elements in stack == maxStackSize)
return TRUE
else return FALSE
Stack Push(stack, item) ::=
if (IsFull(szack)) stackFulil
else insert item into top of stack and return
Boolean IsEmpty(stack) ::=
if (stack == CreateS(maxStackSize))
return TRUE
else return FALSE
Element Pop(stack) ::=
if (IsEmpty(stack)) return
else remove and return the element at the top of the stack.

ADT 3.1; Abstract data type Stack

The IsEmpry and IsFull operations are simple, and we will implement them
directly in the push (Program 3.1) and pop (Program 3.2) functions. Each of these func-
tions assumes that the variables stack and fop are global. The functions are short and
require little explanation. Function push checks to see if the stack is full. If it is, it calls
stackFull (Program 3.3), which prints an error message and terminates execution. When
the stack is not full, we increment rop and assign item to stack [top]. Implementation of
the pop operation parallels that of the push operation. The code of Program 3.2 assumes
that the stackEmpty function prints an error message and returns an item of type element
with a key ficld that contains an error code. Typical function calls would be push (item);
and item = pop ();.

EXERCISES

Implement the stackEmpty function.

2. Using Figures 3.1 and 3.2 as examples, show the status of the system stack after
each function call for the iterative and recursive functions to compute binomial
coefficients (Exercise 9, Section 1.2). You do not need to show the stack frame

Stacks 111

vold push(element item)
{/* add an item to the global stack */
if (top >»>= MAX_STACK-SIZE-1)
stackFull({);
stack{++top] = item;

}

Program 3.1: Add an item to a stack’

element pop()
{/* delete and return the top element from the stack */

if {top == -1}
return stackEmpty(); /* returns an error key */
return stack[top--1;

}

Program 3.2: Delete from a stack

void stackFull(}

{
fprintf (stderr, "Stack is full, cannot add element™);

exit (EXIT FAILURE);
}

Program 3.3: Stack full

itself for each function call, Simply add the name of the function to the stack to
show its invocation and remove the name from the stack to show its termination.

The Fibonacci sequence 0,1, 1,2,3,5,8,13,21, 34, -- -, isdefined as Fy =0, F,
=1,and F; = F,_ + F;_,, i > 2. Write a recursive function, fibon (n), that returns
the nth fibonacci number. Show the status of the system stack for the call fibon (4)
{see Exercise 2). What can you say about the efficiency of this function?

4, Consider the railroad switching network given in Figure 3.3. Railroad cars num-
bered 0, 1, -+ , n—1 are at the right. Each car is brought into the stack and
removed at any time, For instance, if n = 3, we could move in 0, move in I, move
in 2, and then take the cars oul, producing the new order 2, 1,0. Forn=3 andn =
4, what are the possible permutations of the cars that can be obtained? Are any
permutations not possible?

IRERSER NNy gRREN NN N

e 1,2,5n

Figure 3.3: Railroad switching network

3.2 STACKS USING DYNAMIC ARRAYS

A shortcoming of the stack implementation of the preceding section is the need to know,
at compile time, a good bound (MAX.STACK-SIZE} on how large the stack will
become, We can overcome this shorlcoming by using a dynamically allocated array for
the elements and then increasing the size of this array as needed. The following imple-
mentation of CreateS, IsEmpty, and [sFull nses a dynamically allocated array stack
whose initial capacity (i.e., maximum number of stack elements that may be stored in the
array) is 1. Specific applications may dictate other choices for the initial capacity.

Stack CreateS() ::= typedef struct {
int key;
/* other fields */
} element;
element *stack;
MALLCC (stack, sizeof{*stack));
int capacity = 1;
int top = -1;

Stacks Using Dynamic Arrays 113

Boolean IsEmpty(Stack) == top < 0;
Boolean Isbull(Stack) = top >= capacity—1;

While we must alter the code for the push function (Program 3.1) to use the new
test for a full stack (replace MAX_STACK_SIZE with capacity), the code for the pop
function (Program 3.2) is unchanged. Additionally, the code for stackFull is changed.
The new code for stackFull attempts to increase the capacity of the array sfack so that we
can add an additional element to the stack. Before we can increase the capacity of an
array, we must decide what the new capacity should be. In array doubling, we double
array capacity whenever it becomes necessary to increase the capacity of an array. Pro-
gram 3.4 gives the code for stackFull when array doubling is used.

void stackFull(}

{
REALLCC(stack, 2 * capacity * sizeof(*stack})
capacity *= 2;

}

Program 3.4: Stack full with array doubling

Although it may appear that a lot of time is spent doubling the capacity of stack,
this is actually not the case. In the worst case, the realloc function needs to allocate
2xcapacity *sizeof (*stack) bytes of memory and copy capacity #sizeof (¥stack)) bytes of
memory from the old array into the new one. Under the assumptions that memory may
be allocated in O (1) time and that a stack element can be copied in O (1) time, the time
required by array doubling is O (capaciry). Initially, capaciry is |. Suppose that when
we are done with all the stack pushes we wish to perf?rm, capaciry is 2% for some k, k>0.

The total time spent over all array doublings is O(Y 2) = O(2**") = O(2%). Since the
i=1

total number of pushes is more than 2°”! (otherwise the array capacity would not have

been doubled from 24! to 2%), the total time spend in array doubling is O(n), where is

the total number of pushes. Hence, even with the time spent on array doubling added in,

the total run time of push over all n pushes is Ofn). Notice that this conclusion remains

valid whenever stackFull resizes the stack array by a factor ¢>1 (c=2 in Program 3.4,

EXERCISES

1. Let § be a stack whose initial capacity is | and that array doubling is used to
increase the stack’s capacity whenever an elemenet is added to a full stack. Let
n=2*+1, where k is a positive integer, be the maximum number of elements on §

during the execution of some program. How much memory is needed for this pro-
gram to run successfully (consider only the memory needed for the stack and the
array doubling operation)? How muach memory is needed when using the represen-
tation of Section 3.1 (assume we can determine k without running the program)?

2. Prove that whenever stackFull resizes the stack array by a factor ¢>1, the total
time for all invocastions of push (Program 3.1) is O (n), where » is the number of
pushes to the stack. In the initial configuration, te stack is empty and capacity =1.

3. Suppose that we modify Program 3.4 so that the size of stack is increased by an
additive amount c*sizeof (stack). Show that the time for n pushes is O(n? when
the initial configuration is an empty stack and capacity =1.

3.3 QUELUES

A queue is an ordered list in which insertions (also called additions, puts, and pushes)
and deletions (also called remiovals and pops) take place at different ends. The end at
which new elements are added is called the rear, and that from which old elements are
deleted is called the fronr. The restrictions on a queue imply that if we insert A, B, C, D,
and E in that order, then A is the first element deleted from the queue. Figure 3.4 illus-
trates this sequence of events. Since the first element inserted into a queue is the first
element removed, queues are also known as First-In-First-Out (FIFQ) lists. The ADT
specification of the queue appears in ADT 3.2.

A AB ABC ABCD ABCDE BCDE

Y

f,r fr f r f r f r f T
add add add add delete

f=queue front 1 = queue rear

Figure 3.4: Inserting and deleting elements in a queue

The representation of a queue in sequential locations is more difticult than that of
the stack. The simplest scheme employs a one-diL . 2nsional array and two variables,
front and rear. Given this representation, we can define the queue operations in ADT 3.2
as:

Queues 115

ADT Queue is
objects: a finite ordered list with zero or more elements.
functions:
for all gueue € Queue, item € element, maxQueueSize € positive integer
Queue CreateQ(maxQueneSize) 1=
create an empty queue whose maximum size is maxQueueSize
Boolean 1sFullQ{queue, maxQueneSize) ::=
if (number of elements in quene == maxQueuneSize)
return TRUE
else return FALSE
Quene Add(queue, item) ::=
if (IsFullQ(gueue)) queneFull
else insert item at rear of queue and return queue
Boolean IsEmptyQlqueue) ==
if (queue == CreateQ(maxQueueSize))
return TRUE
else return FALSE
Element DeleteQ(queune) ::=
if (IsSEmptyQ{queune)) return
else remove and return the item at front of queue.

ADT 3.2: Abstract data type Quene

Cuene CreateQ(maxQueueSize) 1=
#define MAX_QUEUE_SIZE 100 /* maximum queue size */
typedef struct ({
int key;
/* other fields */
} element;
element gueue [MAX-QUEUE_SIZE];

int rear = —1;
int front = -1;
Boolean IsEmpty(Q{gueue) := front == rear
Boolean IsFullQ(queue) = rear == MAX-_QUEUE-SIZE-1

Since the IsEmptyQ and IsFullQ operations are quite simple, we again implement
them directly in the addq (Program 3.5) and deleteq (Program 3.6) functions. The imple-
mentation of queweFull is similar to that of stackFull (Program 3.3). Functions addg and
deleteq are structurally similar to push and pop on stacks. While the stack uses the

variable top in both push and pop, the queue increments rear in addg and front in
delereq. Typical function calls would be addy (item), and item = deleteg (..

void addg(element item)
A{/* add an item to the gueue */

if (rear == MAX_QUEUE_SIZE-1)
queuekFull () ;
gqueue [++rear] = item;

}

Program 3.5: Add to a queue

element deleteq()
{/* remove element at the front of the queue */
if (front == rear)
return queueEmpty(); /* return an error key */
return queuel++front];

1

Program 3.6: Delete from a queue

This sequential representation of a queue has pitfalls that are best illustrated by an
example.

Example 3.2 [Job scheduling]: Queues are frequently used in computer programming,
and a typical example is the creation of a job queue by an operating system. If the
operating system does not use priorities, then the jobs are processed in the order they
enter the system. Figure 3.5 illustrates how an operating system might process jobs if it
used a sequential representation for its queue.

It should be obvious that as jobs enter and leave the system, the queue gradually
shifts to the right. This means that eventually the rear index equals MAX_QUEUE_SIZE
— 1, suggesting that the queue is full. In this case, queweFull should move the entire
queue to e left so that the first element is again at queue [0] and front is at — 1. It
should also recalculate rear so that it is correctly positioned. Shifting an array is very
time-consuming, particularly when there are many elements in it. In fact, queneFull has
a worst case complexity of O(MAX..QUEUE_SIZE). 0

We can obtain a more efficient queue representation if we we permit the queue to
wrap around the end of the array. At this time it is convenient to think of the array

Queues 117

front | rear | Q[0 Q1] Q@121 @I3] | Comments

-1 -1 queue is empty
-1 0 It Job 1 is added
-1 1 I 12 Job 2 is added
-1 2 n 12 13 Job 3 is added
0 2 I2 13 Job 1 is deleted
] 2 I3 Job 2 is deleted

Figure 3.5: Insertion and deletion from a sequential queue

positions as arranged in a circle (Figure 3.6) rather than in a straight line (Figure 3.4). In
Figure 3.6, we have changed the convention for the variable fronr. This variable now
points one position counterclockwise from the location of the front element in the queue.
The convention for rear is unchanged. This change simplifies the codes slightly.

rear

|

B
A
i |
front frénr
(a) Initial (b) Addition (c) Deletion

Figure 3.6: Circular queue

When the array is viewed as a circle, each array position has a next and a previous
position. The position next to position MAX_QUEUE-SIZE—- 1 is 0, and the position
that precedes O is MAX_QUEUE_SIZE-1. When the queue rear is at
MAX..QUEUE_SIZE — 1, the next eclement is put into position 0. To work with a

circular quene, we must be able to move the variables Sront and regr from their current
position to the next position (clockwise). This may be done using code such as

if (rear == MAX.QUEUE_SIZE - 1} rear = 0;
else rear++;

Using the modulus operator, which computes remainders, this code is equivalent to
(rear+1) % MAX..QUEUE_SIZE. With our conventions for front and rear, we see that
the front element of the queue is located one position clockwise from front and the rear
element is at position rear.

To determine a suitable test for an empty queue, we experiment with the queues of
Figure 3.6. To delete an element, we advance front one position clockwise and to add an
element, we advance rear one position clockwise and insert at the new position. If we
perform 3 deletions from the queue of Figure 3.6(c) in this fashion, we will see that the
queue becomes empty and that front = rear. When we do 5 additions to the queue of Fig-
ure 3.6(b), the queue becomes full and front = rear. So, we cannot distinguish between
an empty and a full queue. To avoid the resulting confusion, we shall increase the capa-
city of a queue just before it becomes full. Consequently, front == rear iff the queue is
empty. The initial value for both front and rear is 0. Progrms 3.7 and 3.8, respectively,
given the codes to add and delete. The code for gueweFull is similar to that of the stack-
Full code of Program 3.3.

void addg{element item)
{/* add an item to the queue */
rear = (rear+l) % MAX-QUEUE_SIZE; N
if (front == rear)
queueFull(); /* print error and exit */
queue [rear] = item;

}

Program 3.7: Add to a circular quene

Observe that the test for a full queue in addg and the test for an empty queue in
deleteq are the same. In the case of addg, however, when front = *rear is evaluated and
found to be true, there is actually one space free (queue|rear]) since the first element in
the queue is not at queue|front] but is one position clockwise from this point. As
remarked earlier, if we insert an item here, then we will not be able to distinguish
between the cases of full and empty, since the insertion would leave front equal to rear.
To avoid this we signal queueFull, thus permitting a maximum of MAX_QUEUE-.SIZE
— | rather than MAX_QUEUE_SIZE elements in the queue at any time, We leave the
implementation of gueueFull as an exercise.

Circular Queues Using Dynamically Allocated Arrays 119

element deleteg()
A/* remove front element from the queue */
element item;

if (front == rear)
return queueEmpty(); /* return an errcr key */
front = (front+1) % MAX_QUEUE_SIZE;

return gueue[front];
}

Program 3.8: Delete from a circular quene

EXERCISES

1. Imptement the queueFull and guewe Empty functions for the noncircular queue.

2. Implement the queueFull and quene Empty functions for the circular queue.

Using the noncircular queue implementation, produce a series of adds and deletes
that requires OMAX. . QUEUE_SIZE) for each add. (Hint: Start with a full
queues)

4. A double-ended quene (degue) is a linear list in which additions and deletions may
be made at either end. Obtain a data representation mapping a deque into a one-
dimensional array. Write functions that add and delete elements from either end
of the deque.

5. We can maintain a linear list circularly in an array, circle [MAX_SIZE]. We set up
JSront and rear indices similar to those used for a circular queue.

{a) Obtain a formula in terms of front, rear, and MAX . SIZE for the number of
elements in the list.

(b) Write a function that deletes the &th element in the list.

(c) Write a function that inserts an element, item, immediately after the kth ele-
ment.

{(d) What is the time complexity of your functions for (b) and {(c)?

34 CIRCULAR QUEUES USING DYNAMICALLY ALLOCATED ARRAYS

Suppose that a dynamically allecated array is used to hold the queue elements. Let
capacity be the number of positions in the array guewe. To add an element to a full
quete, we must first increase the size of this array using a function such as realloc. As
with dynamicalty allocated stacks, we use array doubling. However, it isn’t sufficient to

amnlv dnnhle arrav <i7e neino reallar Cancdider the full anana nf Fiaura 2 70aY Thic

figure shows a queue with seven elements in an array whose capacity is 8. To visualize
array doubling when a circular queue is used, it is better to flatten out the array as in Fig-
ure 3.7(b). Figure 3.7(c) shows the array after array doubling by realloc.

To get a proper circular queve configuration, we must slide the elements in the
right segment (i.c., elements A and B) to the right end of the array as in Figure 3.7(d}.
The array doubling and the slide to the right together copy at most 2*capacity — 2, ele-
ments. The number of elements copied can be limited to capacity — 1 by customizing
the array doubling code so as to obtain the configuration of Figure 3.7(e). This
configuration may be obtained as follows:

(1) Create a new array newQueue of twice the capacity.

(2) Copy the second segment (ie., the elements gueue[front+1] through
gueue [capacity —11) to positions in newQueune beginning at 0.

(3) Copy the first segment (i.e,, the elements gueue [0] through gueue [rear]) to posi-

tions in rewQueune beginning at capacity —front-1.
|

Program 3.9 gives the code to add to a circular queue using a dynamically allo-
cated array. Program 3.10 gives the code for queueFull. The function copy(a.b,c)
copies elements from locations a through -1 to locations beginning at ¢. Program 3.10
obtains the configuration of Figure 3.7(e).

EXERCISES

1. Write and test code that implements the function copy used in Program 3.10. Your
code should work correctly even when there is some overlap between the memory
being copied from and that being copied to.

2. Write and test code for all of the queue functions specified in the queue ADT
(ADT 3.2). In addition, include code for the function gueueFront () that retorns the
element at the front of the queue but does not delete this element from the queue.
In case the queue is empty, your function should print an error message and ter-
minate. You should use array doubling whenever an attempt is made to add an ele-
ment to a full queue.

3.5 A MAZINGPROBLEM

Mazes have been an intrigning subject for many years. Experimental psychologists train
rats to search mazes for food, and many a mystery novelist has used an English country
garden maze as the setting for a murder. We also are interested in mazes since they
present a nice application of stacks. In this section, we develop a program that runs a
maze. Although this program takes many false paths before it finds a correct one, once
found it can correctly rerun the maze without taking any false paths.

In creating this program the first issue that confronts us is the representation of the

A Mazing Problem 121

(3}

queite

LU

Jront=5 rear=4

(b) Flattened view of circular full queue

front =5

(a} A full circular queue

(1 11 (21 31 (4 (51 (6] (7) [8] 191 110 [T1] {121 [13] [14] [15]

Jront =5, rear =4

(c) After array doubling

IR

101 1] (2] [3] [41 (51 [6] 171 (81 191 [10] [i1] [12] [13] [14] [13]

Sront =13, rear =4
(d) After shifting right segment

O 111 (2 13 @] 15 [6] [7] [81 191 [10] (111 [12] [13] [14] [15]
PR] I

front =15, rear=156

et

(e) Alternative configuration

Figure 3.7: Doubling queue capacity

vold addg(element item)
{/* add &an item toc the gqueue */

rear = {(rear+l} % capacity;
if (front == rear)

queuebkull(); /* double capacity */
queue [rear] = item;

Program 3.9: Add to a circular queue

void queueFull ()

{
/* allocate an array with twice the capacity */
element* newQueue;
MALLCC (newQueue, 2 * capacity * sizeof (*queue));

/* copy from gqueue to newQueue */
int start = (front+l} % capacity;
if (start < 2)

/* no wrap around */

copy (queue+start, queue+start+capacity-1, newQueue);
else
{/* gueue wraps around */

copy (gqueue+start, queue+capacity, newQueue);

copy (gueue, queue+rear+l, newQueue+capacity-start);

/* switch to newQueue */
front = 2 * capacity - 1;
rear = capacity - 2;
capacity *= 2;
free(gueue);

gqueue = newlueue;

Pregram 3.10: Doubling queue capacity

A Mazing Problem- 123

maze. The most obvious choice is a two dimensional array in which zeros represent the
open paths and ones the barriers. Figure 3.8 shows a simple maze. We assume that the
rat starts at the top left and is to exit at the bottom right. With the maze represented as a
two-dimensional array, the location of the rat in the maze can at any time be described
by the row and column position. If X marks the spot of our current location,
maze[row][col], then Figure 3.9 shows the possible moves from this position. We use
compass points to specify the eight directions of movement: north, northeast, east,
southeast, south, southwest, west, and northwest, or N, NE, E, SE, §, SW, W, NW.

entrance 0 1 0 0 0 1 1 0 0 0 1 1 1 1 1
100011011 10607111
01 1 000O0T1 1110011
1101 11161101100
110100101 1 11111
001 101110100101
001 101110100101
O1 1 110011111111
001101 101111101
110001 101100000
001 1111006011110
01001 1 1 101 1 1 10 exit

Figure 3.8: An example maze (can you find a path?)

We must be careful here because not every position has eight neighbors. If
[row,col] is on a border then less than eight, and possibly only three, neighbors exist. To
avoid checking for these border conditions we can surround the maze by a border of
ones. Thus an m X p maze will require an (m +2) X (p +2) array. The entrance is at posi-
tion [1][1] and the exit at [m][p].

Another device that will simplify the problem is to predefine the possible direc-
tions to move in an array, move, as in Figure 3.10. This is obtained from Figure 3.9. We
represent the eight possible directions of movement by the numbers from 0 to 7. For
each direction, we indicate the vertical and horizontal offset, The C declarations needed
to create this table are:

Nw N | NE
!

li-NG-1] =111 =110 +1]
i v
\i
w1i111'—1;</\>§< {1i+1] E
(U]
| “
[+ -] L+ [+ +1]
SW S SE

Figure 3.9: Allowable moves

Name Dir movefdir]vert move{dir] horiz l
N 0 ' -1 0!
NE ! i 1
E 2 0 1;
SE 3 i !
S 4 1 0

SwW 5 1 —I‘
w 6 0 -1
NW 7 -1 i

Figure 3.10: Table of moves

typedef struct ({
short int vert;
short int horigz;
} offsets;
offsets move([8]; /* array of moves for each direction */

A Mazing Problem 125

We assume that move is initialized according to the data provided in Figure 3.10.
This means that if we are at position, maze[row][co!], and we wish to find the position of
the next move, maze[nextRow][nextCol}], we set:

nextRow row + move(dir] .vert;
nextCol = col + moveldir].horiz;

As we move through the maze, we may have the choice of several directions of
movement. Since we do not know which choice is best, we save our current position and
arbitrarily pick a possible move. By saving our current position, we can return to it and
try another path if we take a hopeless path. We examine the possible moves starting from
the north and moving clockwise. Since we do not want to return to a previously tried
path, we maintain a second two-dimensional array, mark, to record the maze positions
already checked. We initialize this array’s entries to zero. When we visit a position,
maze[row][col], we change mark{row]{col] to one. Program 3.11 is our initial attempt at
a maze traversal algorithm. EXfT_ROW and EXIT_COL give the coordinates of the
maze exil.

Although this algorithm describes the essential processing, we must still resolve
several issues. Our first concern is with the representation of the stack. Examining Pro-
gram 3,11, we see that the stack functions created in Sections 3.1 and 3.2 will work if we
redefine element as:

typedef struct {
short int row;
short int col;
short int dir;
} element;

I we use the stack implementation of Sction 3.1, we also need to determine a rea-
sonable bound for the stack size. While such a bound is not required when array dou-
bling is used as in Section 3.2, we will need more memory on our computer to guarantee
successful completion of the program (see Exercise 1 of Section 3.2). Since each posi-
tion in the maze is visited no more than once, the stack need have only as many positions
as there are zeroes in the maze. The maze of Figure 3.11 has only one entrance to exit
path. When searching this maze for an entrance to exit path, all positions (except the
exit) with value zero will be on the stack when the exit is reached. Since, an m X p
maze, can have at most mp zeroes, it is sufficient for the stack to have this capacity.

Program 3.12 contains the maze search algorithm. We assume that the arrays,
maze, mark, move, and stack, along with the constants EXIT_ROW, EXIT_COL, TRUE,
and FALSE, and the variable, top, are declared as global. Notice that parh uses a variable
found that is initially set to zero (i.e., FALSE). If we find a path through the maze, we set
this variable to TRUE, thereby allowing us to exit both while loops gracefully.

initialize & stack to the maze’s entrance coordinates and
direction to north;
while (stack is not empty) {

/* move to position at top of stack */

<row,cecl,dir> = delete from top of stack;
while {there are mcre moves from current position) {
<nextRow, nextlocol> = coordinates of next move;
dir = direction of move;
1f ({(nextRow == EXIT_-ROW) && {nextCol == EXIT_COL})
SUCCess;
if {(maze[nextRow] [nextCol] == 0 &&
mark [nextRow] [nextCcl] == 0) {
/* legal move and haven’t been there */
mark [nextRow] [nextCol] = 1;

/* save current position and direction */
add <row,col,dir> to the top of the stack;

row = nextRow;
col = nextCcocl;
dir = north;

}
printf ("No path found\n");

Program 3.11: Initiai maze algorithm

Analysis of path: The size of the maze determines the computing time of path. Since
each position within the maze is visited no more than once, the worst case complexity of
the algorithm is O(mp) where m and p are, respectively, the number of rows and columns

of the maze. O

EXERCISES

1. Describe how you could model a maze with horizontal and vertical walls by a
matrix whose entries are zeroes and ones. What moves are permitted in your

matrix model? Provide an example maze together with its matrix model.

2. Do the previous exercise for the case of mazes that have walls that are at 45 and

135 degrees in addition to horizontal and vertical ones.

Evaluation of Expressions 127

S (D O (D= D
C—,o—O—O =
SO O OO
C— OO O —O
e e =T

—_ . S -

Figure 3.11: Simple maze with a long path

3. What is the maximum path length from start to finish for any maze of dimensions
rows X columns?

4. (a) Find a path through the maze of Figure 3.8.
(b) Trace the action of function path on the maze of Figure 3.8. Compare this to
your own attempt in {a).

5. § [Programming project] Using the information provided in the text, write a com-
plete program to search a maze. Print out the entrance to exit path if successful.

3.6 EVALUATION OF EXPRESSIONS

3.6.1 Expressions

The representation and evaluation of expressions is of great inlerest to computer scien-
tists. As programmers, we write complex expressions such as:

((rear +1==front) | | ((rear==MAX —QUEUE _SIZE — 1) && ! front)) (3.1)
or complex assignment statements such as:
x=a/b—c +d*e—a¥c 3.2)

If we examine expression (3.1), we notice that it conlains operators (==, +, —, Il,
&&, 1), operands (rear, front, MAX..QUEUE_SIZE), and parentheses. The same is true
of the statement (3.2), although the operands and operators have changed, and there are
no parentheses.

The first problem with understanding the meaning of these or any other expres-
sions and statements is figuring out the order in which the operations are performed. For
instance, assume that a =4, b = ¢ = 2, d = ¢ = 3 in statement (3.2). We want to find the
value of x. Isit

void path({void)

{/* output a path through the maze if such a path exists */
int i, row, ccl, nextRow, nextCol, dir, found = FALSE;
element position;
mark [1][L1] = 1; top = 0O;
stack[0].row = 1; stack{0].col = 1; stack[0].dir = 1;
while (top > -1 && !found) {

position = pop();
row = position.row; col = position.col;
dir = position.dir;
while {(dir < 8 && !'found) {
/* move in directicn dir */
nextRow = row + movel[dir].vert;

nextCol = col + move[dir] . horiz;

if {(nextRow == EXIT_ROW && nextCol == EXIT_COL)
found = TRUE;

else if { !'maze[nextRow] [nextCol] &&

! mark[nextRow] {nextCol]) {
mark [nextRew] [nextCol] = 1;
position.row = row; position.col = col;

position.dir = ++dir;

push(position);

row = nextRow; col = nextCol; dir = 0;
}

else ++dir;

}
if (found) {
printf {("The path is:\n");
printf ("row col\n");
for (i = 0; i <= top; i++)
printf ("%2d%5d", stack[i].row, stack[i].col);
printf ("%$2d%5d\n", row, col);
printf ("%2d%5d\n", EXIT_ROW, EXTT_COL) ;
}

else printf{"The maze does not have a path\n");

Program 3.12: Maze search function

Evaluation of Expressions 129

(4/2) =2) + (3% 3}~ (4% 2)
=0+9-8
=1
or
@G22+ *(3-4) %2
= (@3) * (~1)#2
= —2.66666 - - -

Most of us would pick the first answer because we know that division is carried out
before subtraction, and multiplication before addition. If we wanted the second answer,
we would have writien (3.2) differently, using parentheses to change the order of evalua-
tion:

x=((ab—c +d)y*(e —aYsc 3.3

Within any programming language, there is a precedence hierarchy that deter-
mines the order in which we evaluate operators. Figure 3.12 contains the precedence
hierarchy for C. We bave arranged the operators from highest precedence to lowest.
Operators with the same precedence appear in the same box. For instance, the highest
precedence operators are function calls, array elements, and structure or union members,
while the comma operator has the lowest precedence. Operators with highest pre-
cedence are evaluated first. The associativity cotumn indicates how we evaluate opera-
tors with the same precedence. For instance, the multiplicative operators have left-to-
right associativity. This means that the expression a*bjcedle 1s equivalent to ((({(a*b
Yc)%d)e). In other words, we evaluate the operator that is furthest to the left first. With
right associative operators of the same precedence. we evaluate the operator furthest to
the right first. Parentheses are used to override precedence, and expressions are always
evaluated from the innermost parenthesized expression first.

3.6.2 Evaluating Postfix Expressions

The standard way of writing expressions is known as infix notation because in it we
place a binary operator in-between its two operands. We have used this notation for all
of the expressions written thus far. Although infix notation is the most common way of
writing expressions, it is not the one used by compilers to evaluate expressions. Instead
compilers typically use a parenthesis-free notation referred to as postfix. In this notation,
each operator appears after its operands. Figure 3.13 contains several infix expressions
and their postfix equivalents.

Before writing a function that translates expressions from infix to postfix, we
tackle the easier task of evaluating postfix expressions. This evaluation process is much
simpler than the evaluation of infix expressions because therc are no parentheses to con-
sider. To evaluate an expression we make a single left-to-right scan of it. We place the
operands on a stack until we find an operator. We then remove, from the stack, the

Token Operator Precedence’ Associativity
0O function call 17 left-to-right
(1 array element

—. struct or upnicn member

- ++ increment, decrement” 16 left-to-right
—-— ++ decrement, increment’ 15 right-to-left
! logical not

- one’s complement

-+ unary minus or plus

& * address or indirection

sizeof size (in bytes)

(type) type cast 14 right-to-left
* [% multiplicative 13 left-to-right
+ - binary add or subtract 12 left-to-right
<< > shift 11 left-to-right
> >= relational 10 left-to-right
< <=

== = equality 9 left-to-right
& bitwise and 8 left-to-right
A bitwise exclusive or 7 left-to-right
I bitwise or 6 left-to-right
&& logical and 5 left-to-right
Il logical or 4 left-to-right
* conditional 3 right-to-left
= 4= = f= #= % assignment 2 right-to-left
<<= »3= &= "=

, COMmIna 1 left-to-right

1. The precedence column is taken from Harbisor and Steele.

2. Postfix form
3. Prefix form

Figure 3.12: Precedence hierarchy for C

Evaluation of Expressions 131

correct number of operands for the operator, perform the operation, and place the result
back on the stack. We continue in this fashion until we reach the end of the expression.
We then remove the answer from the top of the stack. Figure 3,14 shows this processing
when the input is the nine character string 6 2/3—4 2%+,

Infix Postfix

2+3%4 234%+

a*b+5 ab*5+

{(1+2)%7 12+7= ,
axb/c ab*c/
{(@aAb—c+dy*(e—a)sc | abc—d +/ea—*c*
a/b—c +d*e—a*e ab /o —~de* +ac*—

Figure 3.13: Infix and postfix notation

Token Stack Top
[0] m 2]
6 6 0
2 6 2 1
/ 6/2 0
3 6/2 3 1
- 6/2-3 0
4 6/2-3 4 1
2 6/2-3 4 2 2
® 6/2-3 4x2 i
+ 6/2-3+4%2 0

Figure 3.14: Postfix evaluation

‘We now consider the representation of both the stack and the expression. To sim-
plify our task we assume that the expression contains only the binary operators +, ~, %, /,
and % and that the operands in the expression are single digit integers as in Figure 3.14.
This permits us to represent the expression as a character array. The operands are stored
on a stack of type int until they are needed. We may use either of the representations of
Sections 3.1 and 3.2. It is convenient to define the enumerated type precedence, which
lists the operators by mnemonics, as below:

typedef enum {lparen, rparen, plus, minus, times, divide,
mod, ecs, operand} precedence;

Although we will use it to process tokens (operators, operands, and parentheses) in
this example, its real importance becomes evident when we translate infix expressions
into postfix ones. Besides the usual operators, the enumerated type also includes an
end-of-string (eos) operator.

The function eval (Program 3.13) contains the code to evaluate a postfix expres-
sion. Since an operand (symbol) is initially a character, we must convert it into a single
digit integer. We use the statement, symbol — ', to accomplish this task. The statement
takes the ASCII value of symbol and subtracts the ASCII value of *0°, which is 48, from
it. For example. suppose symbol = "1°. The character, *1°, has an ASCII value of 49.
Therefore, the statement symbol — 0" produces as result the number 1,

We use an auxiliary function, getToken (Program 3.14), to obtain tokens from the
expression string. If the token is an operand, we convert it to a number and add it to the
stack. Otherwise, we remove two operands from the stack, perform the specified opera-
tion, and place the result back on the stack. When we have reached the end of expres-
sion, we remove the result from the stack.

3.6.3 Infix to Postfix

We can describe an algorithm for producing a postfix expression from an infix one as fol-
lows:

(1) Fully parenthesize the expression.

(2) Move all binary operators so that they replace their corresponding right
parentheses.

(3) Delete all parentheses.

For example, a/b—c +d*e —~a*c when fully parenthesized becomes:
({((a/b)—c) + (d*e))-a*c))

Performing str-,;ps 2 and 3 gives:
ab /e ~de*+ac*—

Although this algorithm works well when done by hand, it is inefficient on a com-
puter because it requires two passes. The first pass reads the expression and
parenthesizes it, while the second moves the operators. Since the order of operands is
the same in infix and postfix, we can form the postfix equivalent by scanning the infix
expression lfeft-to-right. During this scan, operands are passed to the output expression
as they are encountered. However, the order in which the operators are output depends

Evaluation of Expressions 133

int eval(void)

{/* evaluate a postfix expression, expr, maintained as a
global variable. f\(0’ is the the end of the expression.
The stack and top of the stack are global variables.
getToken is used to return the tcken type and
the character symbecl. Operands are assumed to be single
character digits */

precedence token;
char symbol;
int opl, opZ;
int n = 0; /* counter for the expressicn string */
int top = -1;
Loken = getTcken{&symbol, &n);
while (token '= eocs) {
if (token == operand)
push(symbol-'0’); /* stack insert */
else {
/* pop two operands, perform operation, and
push result to the stack */
op2 = popl(); /* stack delete */
opl = pop();
switch(token) |
case plus: push(opl+op2);
break;
case minus: push{opl-op2);
break;
case times: push{opl*op2);
break;
case divide: push{opl/op2);
break;
case moed: push(opl%opZ);

}
tcken = getToken(&symbol, &n});

}
return pop{); /* return result */

}

Program 3.13: Function to evaluate a postfix expression

precedence getToken(char *symbol, int *n)

{/* get the next token, symbol is the character
representation, which is returned, the token is
represented by its enumerated value, which
is returned in the function name */

*symbol = expr[{*n)++];
switch {(*symbol) {

case ‘(' : return lparen;

case ')’ : return rparen;

case '+’ @ return plus;

case '—' : return minus;

case '/’ : return divide;

case '*’ : return times;

case %’ : return mod;

case ' ' : return eos;

default : return operand; /* no error checking,

default is operand */

Program 3.14: Function to get a token from the input string

on their precedence. Since we must output the higher precedence operators first, we save
operators until we know their correct placement. A stack is one way of doing this, but
removing operators correctly is problematic. Two examples illustrate the problem.

Example 3.3 [Simple expression]: Suppose we have the simple expression a+b*c,
which yields abc*+ in postfix. As Figure 3.15 illustrates, the operands are output
immediately, but the two operators need to be reversed. In general, operators with
higher precedence must be output before those with lower precedence. Therefore, we
stack operators as long as the precedence of the operator at the top of the stack is less
than the precedence of the incoming operator. In this particular example, the unstacking
occurs only when we reach the end of the expression. At this point, the two operators
are removed. Since the operator with the higher precedence is on top of the stack, it is
removed first. O

Example 3.4 [Parenthesized expression]: Parentheses make the translation process
more difficult because the equivalent postfix expression will be parenthesis-free. We use
as our example the expression a*(b +c)*d, which yields abc +*d* in postfix. Figure
3.16 shows the translation process. Notice that we stack operators until we reach the

Evaluation of Expressions 135

Token Stack Top | Output
] 0l (11 [2)

a -1 a

+ + a

b + 0| ab

* + 1| ab

c + 1 | abe
eos -1 | abc*+

Figure 3.15: Translation of a +b*c to postfix

right parenthesis. At this point we unstack until we reach the corresponding left
parenthesis. We then delete the left parenthesis from the stack. (The right parenthesis is
never put on the stack.} This leaves us with only the *d remaining in the infix expres-
sion. Since the two multiplications have equal precedences, one is output before the d,
the second is placed on the stack and removed after the 4 is output. O

Token Stack Top | Output
0 0l 2]

a -1 a

& * 0 a

{ * (11 a

b * { 1 | ab

+ * (+ 2 | ab

c * (+ 2 | abc

) * 0| abc+

* * 0 | abc +#

d * 0 | abc +%d

eos * 0 abc +xdx*

Figure 3.16: Translation of a*(b +c)*d to postfix

The analysis of the two examples suggests a precedence-based scheme for stack-
ing and unstacking operators. The left parenthesis complicates matters because it
behaves like a low-precedence operator when it is on the stack, and a high-precedence

one when it is not. It is placed in the stack whenever it is found in the expression, but it
is unstacked only when its matching right parenthesis is found. Thus, we have two types
of precedence, an in-stack precedence (isp) and an incoming precedence (icp). The
declarations that establish these precedences are:

/* isp and icp arrays -- index is value of precedence
lparen, rparen, plus, minus, times, divide, mod, eos */

int ispl] = {0,19,12,12,13,13,13,0};

int icpl] {20,19,12,12,13,13,13,0};

Notice that we are now using the stack to store the mnemonic for the token. That
is, the data type of the stack elements is precedence. Since the vaiue of a variable of an
enumerated type is simply the integer corresponding to the position of the value in the
enumerated type, we can use the mnemonic as an index into the two arrays. For exam-
ple, isp {plus | is translated into isp [2], which gives us an in-stack precedence of 12, The
precedences are taken from Figure 3.12, but we have added precedences for the left and
right parentheses and the eos marker. We give the, right parenthesis an in-stack and
incoming precedence (19) that is greater than the precedence of any operator in Figure
3.12. We give the left parenthesis an instack precedence of zero, and an incoming pre-
cedence (20) greater than that of the right parenthesis. In addition, because we want
unstacking to occur when we reach the end of the string, we give the eos token a low
precedence (0). These precedences suggest that we remove an operator from the stack
only if its instack precedence is greater than or equal to the incoming precedence of the
new operator. !

The function postfix (Program 3.15) converts an infix expression into a postfix one
using the process just discussed. This function invokes a function, prini—token, to print
out the character associated with the enumerated type. That is, prini—token reverses the
process used in gef _ioken.

Analysis of postfix: Let n be the number of tokens in the expression. ©{(n) time is spent
extracting tokens and outputting them. Besides this, time is spent in the two while loops.
The total time spent here is ®(xn) as the number of tokens that get stacked and unstacked
is linear in n. So, the complexity of function postfix is &(n). O

EXERCISES

1. Write the postfix form of the following expressions:
(a) a*b*c
b) ~a+b-—c+d
) a*x-b+c
(dy (a+b)y*xd+e/(frarxd)+c

Evaluation of Expressions 137

voild postfix(veid)
{/* cutput the postfix of the expression. The expression
string, the stack, and top are global */
char symbol;
precedence token;
int n = 0;

int top = 0; /* place eos on stack */
stack([0] = eos;
for (token = getToken(&symbol, &n); token != eos;
token = getToken(&symbol, &n)) {
if (token == operand) .
printf("%c", symbol);
else if (token == rparen) {
/* unstack tokens until left parenthesis */
while (stack([top]! != lparen)

printToken (pop()};
pop(); /* discard the left parenthesis */
}
else {
/* remove and print symbols whose isp is greater
than or equal to the current token’s icp */
while(isp[stack[topl]l] >= icpltoken])
printToken (pop());
push (token);

}
while ((token = pop()} != eos)
printToken (token} ;
printf ("\n");
}

Program 3.15: Function to convert from infix to postfix

(e) a&&bllc! (e>f)(assuming C precedence)
) Na&&'Wb<Hlc>d)l(c<e)
Write the print_token function used in postfix (Program 3.15).

3. Use the precedences of Figure 3.12 together with those for *(’, *)’, and \0 to answer
the following:

(a) Inthe postfix function, what is the maximum number of elements that can be

on the stack at any time if the input expression, expr, has r operators and an
unlimited number of nested parentheses?

{(b) What is the answer to (a) if expr has n operators and the depth of the nesting
of parentheses is at most six?

Rewrite the eval function so that it evaluates the unary operators + and —.

§ Rewrite the postfix function so that it works with the following operators,
besides those used in the text: &&, !, <<, >>, <=, I=, <, >, <=, and >=. (Hint:
Write the equation so that the operators, operands, and parentheses are separated
with a space, for example, a + b > ¢. Then review the functions in <string.h>.)

Another expression form that is easy to evaluate and is parenthesis-free is known
as prefix. In prefix notation, the operators precede their operands. Figure 3.17
shows several infix expressions and their prefix equivalents. Notice that the order
of operands is the same in infix and prefix.

Infix Prefix

a*b/c frabc

a/b-—c +d*e—a*c | —+—/abc*de*ac
ax(b+c)d—g —/*a +bcdg

Figure 3.17: Infix and postfix expressions

(a) Write the prefix form of the expressions in Exercise 1.

(b) Write a C function that evaluates a prefix expression, expr. (Hint: Scan expr
from right to left.)

{c) Write a C function that transforms an infix expression, expr, into its prefix
equivalent.

What is the time complexity of your functions for (b) and (c)? How much space is
needed by each of these functions?

Write a C function that transforms a prefix expression into a postfix one. Carefully
state any assumptions you make regarding the input. How much time and space
does your function take?

Write a C function that transforms a postfix expression into a prefix one. How
much time and space does your function take?

Write a C function that transforms a postfix expression into a fully parenthesized
infix expression. A fully parenthesized expression is one in which all the subex-
pressions are surrounded by parentheses. For example, a+b+c becomes

Multiple Stacks and Queues 139

{{a +b)+c). Analyze the time and space complexity of your function.

10. Write a C function that transforms a prefix expression into a fully parenthesized
infix expression. Analyze the time and space complexity of your function.

11. § Repeat Exercise 5, but this time transform the infix expression into prefix.

3.7 MULTIPLE STACKS AND QUEUES

Until now we have been concerned only with the representations of a single stack or a
single queue. In both cases, we have seen that it is possible to obtain efficient sequential
representations. We would now like to examine the case of multiple stacks. (We leave
the consideration of multiple queues as an exercise.) We again examine only sequential
mappings of stacks into an array, memoryl MEMORY_SIZE]. If we have only two stacks
to represent, the solution is simple. We use memory [0] for the bottom element of the
first stack, and memory[MEMORY_SIZE — 1| for the bottom element of the second stack.
The first stack grows toward memory|MEMORY_SIZE — I] and the second grows toward
memory [0]. With this representation, we can efficiently use all the available space.

Representing more than two stacks within the same array poses problems since we
no longer have an obvious peint for the bottom element of each stack. Assuming that we
have n stacks, we can divide the available memory into n segments. This initial division
may be done in proportion to the expected sizes of the various stacks, if this is known.
Otherwise, we may divide the memory into equal segments,

Assume that i refers to the stack number of one of the n stacks. To establish this
stack, we must create indices for both the bottom and top positions of this stack. The
convention we use is that boundary [i], 0 < i < MAX_STACKS, points to the position
immediately to the left of the bottom element of stack i, while wopli], 0 < i <
MAX_STACKS points to the top element. Stack i is empty iff boundary[i] = topli]. The
relevant declarations are:

#define MEMORY_SIZE 100 /* size of memcry */

#define MAX_STACKS 10 /* max number of stacks plus 1 =*/
/* global memory declaraticon */

element memory[MEMORY_SIZE];

int top[MAX -_STACKS];

int boundary [MAX_STACKS];

int n; /* number of stacks entered by the user */

To divide the array into roughly equal segments we use the following code:

top[0] = boundary[0] = -1;
for (j = 1; j < n; Jj++)

topl[jl = boundary[j] = (MEMORY_SIZE/n)*j;
haiinAdaruvinl = MEMORY _STZR-—1 -

Figure 3.18 shows this initial configuration. In the figure, 7 is the number of stacks
entered by the user, n < MAX_STACKS, and m = MEMORY_SIZE. Stack i can grow
from boundaryli] + 1 to boundary [i + 11 before it is full. Since we need a boundary for
the last stack, we set boundary[n] to MEMORY-SIZE- 1. Programs 3.16 and 3.17
implement the add and delete operations for this representation,

4] |m/n] 2[m/n] m—1
boundary (0] boundary [1} boundary [n]
top [0] top 1]

All stacks are empty and divided into roughly equal segments.

Figure 3.18: Initial configuration for n stacks in memory [m .

void push(int i, element item)
{/* add an item to the ith stack */

if (topli] == boundary[i+1])
stackFull{i);
memory[++top[i]] = item;

}

Program 3.16: Add an item to the ith stack

The push (Program 3.16) and pop (Program 3.17) functions for multiple stacks
appear to be as simple as those we used for the representation of a single stack. How-
ever, this is not really the case because the rop[i] == boundaryli+1] condition in push
implies only that a particular stack ran out of memory, not that the entire memory is full.
In fact, there may be a lot of unused space between other stacks in array memory (see
Figure 3.19). Therefore, we create an error recovery function, stackFull, which deter-
mines if there is any free space in memory. If there is space available, it should shift the
stacks so that space is allocated to the full stack.

There are several ways that we can design stackFull so that we can add elements
to this stack until the array is full. We outline one method here. Other methods are dis-
cussed in the exercises. We can guarantee that stackFulf adds elements as long as there
is free space in array memory if we:

(1) Determine the least, j, i < j < n, such that there is free space between stacks j and j

Multiple Stacks and Quenes 141

element pop(int i}
{/* remove top element from the ith stack */

}

if (top(i] == boundary[i])

return stackEmpty{i);

return memeory|[top(il——1;

Program 3.17: Delete an item from the jth stack

]

0 T T , . T T
b[0O] [0 B[1] t[1] blil th] ti+1] 1] blj+1] bln]

bli+1] bli+2]

b = boundary, t = top

Figure 3.19: Configuration when stack / meets stack / + 1, but the memory is not full

(2)

(3)

+ 1. That is, toplj) < boundaryfj+1]. If there is such a j, then move stacks i+1,
i+2, +-+ , j one position to the right (treating memory|0] as leftmost and
memory[MEMORY.SIZE — I] as rightmost). This creates a space between stacks {
and i+1.

If there is no j as in (1), then look to the left of stack 7. Find the largest j such that
0 < j < i and there is space between stacks j and j+1. That is, top[j] <
boundary[j+1}. If there is such a j, then move stacks j+1, j+2, - -+, i one space to
the left. This also creates a space between stacks f and i+1.

If there is no j satisfying either condition (1) or condition (2), then all
MEMORY _SIZE spaces of memory are utilized and there is no free space. In this
case stackFull terminates with an error message.

We leave the implementation of stackFull as an exercise. However, it shouid be

clear that the worst case performance of this representation for the n stacks together will
be poor. In fact, in the worst case, the function has a time complexity of
OMEMORY_SIZE).

EXERCISES

1.

3.8

We must represent two stacks in an array, memoryIMEMORY_SIZE]. Write C
functions that add and delete an item from stack ¢, 0 <i < n. Your functions should
be able to add elements to the stacks as long as the total number of elements in
both stacks is less than MEMORY_SIZE - 1.

Obtain a data representation that maps a stack and a queue into a single array,
memory| MEMORY _SIZE]. Write C functions that add and delete elements from
these two data objects. What can you say about the suitability of your data
representation?

Write a C function that implements the stackFull strategy discussed in the text.

Using the add and delete functions discussed in the text and stackFull from Exer-
cise 3, produce a sequence of additions/deletions that requires QIMEMORY__SIZE)
time for each add. Assume that you have two stacks and that your are starting
from a configuration representing a full utilization of memory[MEMORY _SIZE).

Rewrite the push and stackFull functions so that the pusk function terminates if
there are fewer than ¢ free spaces left in memory. The empirically determined
constant, ¢; shows when it is futile to move items in memory, Substitute a smali
constant of your choice.

Design a data representation that sequentially maps n queues into an array
memory|MEMORY _SIZFE]. Represent each queue as a circular gqueue within
memory. Write functions addyg, deleteq, and queueFull for this representation.

ADDITIONAL EXERCISES

$ {Programming project] [Landweber] People have spent so much time playing
solitaire that the gambling casinos are now capitalizing on this human weakness,
A form of solitaire is described below. You must write a C program that plays this
game, thus freeing hours of time for people to return to more useful endeavors.

To begin the game, 28 cards are dealt into seven piles. The leftmost pile has one
card, the next pile has two cards, and so forth, up 1o seven cards in the rightmost
pile. Only the uppermost card of each of the seven piles is turned face-up. The
cards are dealt left-to-right, one card to each pile, dealing cone less pile each time,
and turning the first card in each round face-up. You may build descending
sequences of red on black or black on red from the top face-up card of each pile.
For example, you may place either the eight of diamonds or the eight of hearts on
the nine of spades or the nine of clubs. All face-up cards on a pile are moved as a
unit and may be placed on another pile according to the bottom face-up card. For
example, the seven of clubs on the eight of hearts may be moved as a unit onto the
nine of clubs or the nine of spades.

Additional Exercises 143

Whenever a face-down card is uncovered, it is turned face-up. If one pile is
removed completely, a face-up king may be moved from a pile (together with all
cards above it) or the top of the waste pile (see below) into the vacated space.
There are four output piles, one for each suite, and the object of the game is to get
as many cards as possible into the output piles. Each time an ace appears at the top
of a pile or the top of the stack it is moved into the appropriate output pile. Cards
are added to the output piles in sequence, the suit for each pile being determined
by the ace on the bottom.

From the rest of the deck, called the stock, cards are turned up one by one and
ptaced face-up on a waste pile. You may always play cards off the top of the waste
pile, but only one at a time. Begin by moving a card from the stock to the top of
the waste pile. If you can ever make more than one possible play, make them in
the following order:

(a} Move a card from the top of a playing pile or from the top of the waste pile
to an output pile, If the waste pile becomes empty, move a card from the
stock to the waste pile.

(b) Move a card from the top of the waste pile to the leftmost playing pile to
which it can be moved. If the waste pile becomes empty, move a card from
the stock to the waste pile.

(c) Find the leftmost playing pile that can be moved and place it on top of the
leftmost playing pile to which it can be moved.

(dy Try (a}, (b}, and (c) in sequence, restarting with (a) whenever a move is
made.

(e) If no move is made via (a) through (d), move a card from the stock to the
waste pile and retry (a).

Only the top card of the playing piles or the waste pile may be played to an output
pile. Once placed on an output pile, a card may not be withdrawn to help else-
where. The game is over when either all the cards have been played to the output
piles, or the stock pile has been exhausted and no more cards can be moved.

When played for money, the player pays the house $52 at the beginning, and wins
$5 for every card played to the output piles. Write your program so that it will
play several games and determine your net winnings. Use a random number gen-
erator to shuffle the deck. Output a complete record of two games in easily under-
standable form, Include as output the number of games played and the net win-
nings (+ or —).

§ [Programming project| |[Landweber| We want to simulate an airport landing and
takeoff pattern. The airport has three runways, runway 0, runway 1, and raunway 2.

There are fonr landino haldine nattarne twn e aacrh Af tha firet fiun sminmwaue

Arriving planes enter one of the holding pattern queuves, where the queues are to
be as close in size as possible. When a plane enters a holding queue, it is assigned
an integer identification number and an integer giving the number of time units the
plane can remain in the queue before it must land (because of low fuel level).
There is also a queue for takeoffs for each of the three runways. Planes arriving in
a takeoff queue are assigned an integer identification number. The takeoff queues
should be kept approximately the same size.

For each time period, no more than three planes may arrive at the landing queues
and no more than three planes may enter the takeoff queues. Each mnway can
handle one takeoff or landing at each time slot. Runway 2 is used for takeoffs
except when a plane is low on fuel. During each time period, planes in either
landing queue whose air time has reached zero must be given priority over other
landings and takeoffs. If only one plane is in this category, runway 2 is used. If
there is more than one plane, then the other runways are also used.

Use successive even(odd) integers for identification numbers of the planes arriving
at takeoff (landing) queues. At each time unit assume that arriving planes are
entered into queues before takeoffs or landings occur. Try to design your algo-
rithm so that neither landing nor takeoff queues grow excessively. However, arriv-
ing planes must be placed at the ends of queues and the queues cannot be reor-
dered.

Your output should label clearly what cccurs during each time unit. Periodically
you should also output:

(a) the contents of each queue
(b) the average takeoff waiting time
(c) the average landing wailing time

(d) the number of planes that have crashed (run out of fuel and there was no
open runway) since the last time period.

